SUITES GEOMETRIQUES 2ème Sciences

Exercice 1

Soit (U_n) une suite géométrique définie sur \mathbb{N} tel que $U_3=24$ et $U_8=768$

- 1) Décomposer 32 en produit de facteurs premiers.
- 2) a) Déterminer la raison q de cette suite.
 - b) Déterminer le premier terme U_0 de cette suite
- 3) a) Exprimer U_n en fonction de n
 - **b)** Calculer $S = U_0 + U_1 + U_2 + \cdots + U_8$

Exercice 2

Soit (U_n) la suite définie par : $U_0 = 0$ et $U_{n+1} = 4U_n + 9$

- 1) a) Calculer U_1 , U_2 et U_3
 - b) Montrer que la suite (U_n) n'est ni arithmétique ni géométrique.
- 2) On pose pour tout entier naturel $n, V_n = U_n + 3$
 - **a)** Montrer que $V_{n+1} = 4U_n + 12$
 - b) En déduire que V est une suite géométrique de raison 4.
 - c) Exprimer alors V_n puis U_n en fonction de n.
- 3) On pose $S = V_0 + V_1 + V_2 + \dots + V_n$ et $S' = U_0 + U_1 + U_2 + \dots + U_n$
 - a) Montrer que $S = 4^n 1$
 - **b)** En déduire S'

Exercice 3

- 1) Soit la suite réelle (U_n) définie sur $\mathbb N$ par : $\begin{cases} U_0 = 1 \\ U_{n+1} = \frac{1}{2}U_n + 1 \end{cases} \ \forall n \in \mathbb N$
 - a) Calculer U_1 et U_2
 - b) Montrer que la suite (U_n) n'est ni arithmétique ni géométrique.
- 2) Soit la suite (V_n) définie sur \mathbb{N} par : $V_n = U_n 2$
 - a) Calculer V_0 et V_1
 - b) Montrer que (V_n) est une suite géométrique de raison $q=\frac{1}{2}$
 - c) Exprimer V_n puis U_n en fonction de n

Exercice 4

Soit la suite réelle (U_n) définie sur $\mathbb N$ par : $U_0=1$ et pour tout $n\in\mathbb N$, $U_{n+1}=2U_n+2$

- 1) a) Calculer U_1 et U_2
 - **b)** Montrer que la suite (U_n) n'est ni arithmétique ni géométrique.
- 2) Soit la suite (V_n) définie sur \mathbb{N} par : $V_n = U_n + 2$
 - a) Calculer V_1 et V_2

- **b)** Montrer que pour tout $n \in \mathbb{N}$ on a : $V_{n+1} = 2V_n$
- c) En déduire que la suite (V_n) est suite géométrique dont on déterminera la raison et le premier terme
- 3) a) Exprimer V_n en fonction de n
 - b) En déduire U_n en fonction de n3
- 4) a) Calculer $S_n = V_0 + V_1 + V_2 + \cdots + V_n$
 - b) En déduire $S = U_0 + U_1 + U_2 + \cdots + U_n$

Exercice 5

Soit la suite réelle (U_n) définie sur $\mathbb N$ par : $\begin{cases} U_0 = 0 \\ U_{n+1} = \frac{2U_n + 3}{U_n + 4} \end{cases} \quad \forall n \in \mathbb N$

- 1) a) Calculer U_1 et U_2
 - b) En déduire que la suite (U_n) n'est ni arithmétique ni géométrique.
- 2) Soit la suite réelle (V_n) définie sur N par : $V_n = \frac{U_n 1}{U_n + 3}$
 - a) Montrer que (V_n) est une suite géométrique dont on précisera la raison et le premier terme.
 - b) Calculer U_n en fonction de n
 - c) Calculer $S_n = V_0 + V_1 + V_2 + \cdots + V_n$
- 3) Soit la suite (W_n) définie sur N par : $W_n = \frac{-4}{U_n+3}$
 - a) Montrer que $\forall n \in \mathbb{N}$ on a : $W_n + 1 = V_n$
 - c) Calculer $\frac{-4}{u_0+3} + \frac{-4}{u_1+3} + \frac{-4}{u_2+3} + \dots + \frac{-4}{u_n+3}$

Exercice 6

- 1) Soit U la suite réelle définie sur N par : $\begin{cases} U_0 = 1 \\ U_{n+1} = \sqrt{1 + 4U_n^2} \end{cases}$ pour tout $\forall n \in \mathbb{N}$
 - a) Calculer U_1 et U_2
 - b) En déduire que la suite (U_n) n'est ni arithmétique ni géométrique.
- 2) On pose pour tout $n \in \mathbb{N}$, $V_n = U_n^2 + \frac{1}{3}$
 - a) Montrer que V est une suite géométrique de raison 4
 - b) Exprimer V_n puis U_n en fonction de n.
- 3) a) Calculer $S = V_0 + V_1 + V_2 + \cdots + V_n$
 - **b)** En déduire $S' = U_0^2 + U_1^2 + U_2^2 + \cdots + U_n^2$

Exercice 7

Soit la suite réelle (U_n) définie sur \mathbb{N} par : $\begin{cases} U_0 = -3 \\ U_{n+1} = 3U_n + 8 \end{cases}$ $\forall n \in \mathbb{N}$

- 1) a) Calculer U_1 et U_2
- **b)** En déduire que la suite (U_n) n'est ni arithmétique ni géométrique.
- 2) Soit la suite (V_n) définie sur \mathbb{N} par : $V_n = U_n + 4$

- a) Montrer que (V_n) est une suite géométrique dont on précisera la raison et le premier terme.
- b) Exprimer V_n puis U_n en fonction de n.
- 3) a) Calculer $S_{n+1} = V_0 + V_1 + V_2 + \cdots + V_n$
 - **b)** Calculer $T_{n+1} = U_0 + U_1 + U_2 + \cdots + U_n$
- 4) Soit la suite (W_n) définie sur \mathbb{N} par : $W_n = V_n + 3n 3 3^n$

Calculer
$$P_{n+1} = W_0 + W_1 + W_2 + \dots + W_n$$

Exercice 8

Soit la suite réelle (U_n) définie sur \mathbb{N} par : $U_0 = 0$ et $U_{n+1} = \sqrt{\frac{1}{2}U_n^2 + 2}$ pour tout $\forall n \in \mathbb{N}$

- 1) Calculer U_1 et U_2
- 2) Soit la suite (V_n) définie sur \mathbb{N} par : $V_n = U_n^2 4$
 - a) Montrer que (V_n) est une suite géométrique dont on précisera le premier terme et la raison
 - b) Déterminer V_n en fonction de n et en déduire U_n , en fonction de n
 - c) Calculer la somme $S = U_0^2 + U_1^2 + \cdots + U_n^2$
- 3) Soit la suite W définie sur \mathbb{N} par : $\begin{cases} W_n = 4 \\ W_{n+1} W_n = 4 \end{cases}$

Exprimer W_n en fonction de n

Exercice 9

Soit la suite réelle (U_n) définie sur \mathbb{N} par : $U_0 = \frac{1}{2}$ et $U_{n+1} = \frac{U_n}{1 + U_n}$ pour tout $\forall n \in \mathbb{N}$

- 1) a) Calculer U_1 et U_2
 - b) En déduire que la suite (U_n) n'est pas arithmétique.
- 2) Soit la suite (V_n) définie sur \mathbb{N} par : $V_n = \frac{U_n+1}{U_n}$
- a) Montrer que la suite (V_n) est une suite arithmétique dont on déterminera la raison et le premier terme.
 - b) Exprimer V_n en fonction de n
 - c) En déduire que pour tout $n \in \mathbb{N}$ on a : $U_n = \frac{1}{2n+2}$
- 3) On donne $S_n = V_1 + V_2 + \cdots + V_n$ où $n \in \mathbb{N}^*$

et
$$S' = (V_2^2 - V_1^2) + (V_4^2 - V_3^2) + \dots + (V_{98}^2 - V_{97}^2) + (V_{100}^2 - V_{99}^2)$$

- a) Montrer que $S_n = n^2 + 4n$
- b) Déterminer la valeur de n pour que $S_n = 10400$
- c) Déduire que S' = 20800

Exercice 10

Soit la suite réelle (U_n) définie sur $\mathbb N$ par : $\begin{cases} U_0 = -1 \\ U_{n+1} = \frac{4U_n + 3}{U_n + 6} \end{cases} \quad \forall n \in \mathbb N$

- 1) a) Calculer U_1 et U_2
 - b) En déduire que la suite (U_n) n'est ni arithmétique ni géométrique.

- 2) Soit la suite (V_n) définie sur N par : $V_n = \frac{U_n 1}{U_n + 3}$
 - a) Montrer que (V_n) est une suite géométrique dont on précisera le premier terme et la raison.
 - b) Calculer V_n en fonction de n.
 - c) En déduire U_n en fonction de n.
- 3) Soit $S_n = V_0 + V_1 + V_2 + \dots + V_n$ Montrer que $S_n = \frac{7}{4} \left(\left(\frac{3}{7} \right)^{n+1} - 1 \right)$

Exercice 11

On considère la suite (U_n) définie sur \mathbb{N}^* par : $U_1 = \frac{3}{2}$ et $U_{n+1} = \frac{1}{2}U_n + \frac{n-2}{n(n+1)(n+2)}$ pour tout $\forall n \in \mathbb{N}$

- 1) a) Calculer U_2 et U_3
 - b) En déduire que la suite (U_n) n'est ni arithmétique ni géométrique.
- 2) Soit la suite (V_n) définie sur \mathbb{N}^* par : $V_n = U_n \frac{2}{n(n+1)}$
 - a) Calculer V₁
 - b) Montrer que la suite (V_n) est une suite géométrique de raison $q=\frac{1}{2}$
 - c) Déterminer V_n en fonction de n et en déduire U_n , en fonction de n
- 3) a) Vérifier que pour tout $n \in \mathbb{N}^*$ on a : $\frac{1}{n(n+1)} = \frac{1}{n} \frac{1}{n+1}$
 - b) Calculer en fonction de n, $S_n = V_1 + V_2 + V_3 + \cdots + V_n$
 - c) En déduire que $S_n' = U_1 + U_2 + U_3 + \cdots + U_n$
 - **d)** Montrer que pour tout $n \in \mathbb{N}^*$ on $a : S'_n < 3$

Exercice 12

On considère la suite
$$(U_n)$$
 définie sur $\mathbb N$ par :
$$\begin{cases} U_0 = \frac{1}{3} \\ U_{n+1} = \frac{3U_n}{1+2U_n} \end{cases}$$

On suppose que pour tout entier naturel n, on a : $0 < U_n < 1$

- 1) a) Vérifier que pour tout $n \in \mathbb{N}$, on a : $U_{n+1} U_n = \frac{2U_n(1-U_n)}{1+2U_n}$
 - b) En déduire que pour tout $n \in \mathbb{N}$, on a : $U_{n+1} > U_n$
- 2) soit la suite (V_n) définie sur \mathbb{N} par : $V_n = \frac{1 U_n}{2U_n}$
 - a) Montrer que (V_n) est une suite géométrique de raison $q=\frac{1}{2}$
 - b) Calculer V_0 puis exprimer V_n en fonction de n
 - c) En déduire que pour tout $n \in \mathbb{N}$, on a : $U_n = \frac{3^n}{2+3^n}$
- 3) a) Montrer que pour tout $n \in \mathbb{N}$, on $a: 1 + 2U_n = \frac{U_n 1}{U_{n+1} 1}$
 - b) En déduire que $(1+2U_0) \times (1+2U_1) \times (1+2U_2) \times ... \times (1+2U_n) = \frac{2}{3}+3^n$