Produit scalaire dans le plan 3ème Sc Expérimentales

Exercice 1

Une seule des réponses est exacte. Trouver cette réponse

- 1) \vec{u} , \vec{v} et \vec{w} sont trois vecteurs du plan non nuls, l'expression $(\vec{u} \cdot \vec{v}) \cdot \vec{w}$ désigne :
 - a) un nombre réel
- b) un vecteur colinéaire à \overrightarrow{w}
- c) n'a pas de sens.
- 2) \vec{u} , \vec{v} et \vec{w} sont trois vecteurs du plan non nuls tel que : \vec{u} . $\vec{v} = \vec{u}$. \vec{w} alors on a nécessairement :
 - a) $\vec{v} = \vec{w}$
- b) $\vec{u} \perp \vec{v}$ et $\vec{u} \perp \vec{w}$
- c) $\vec{u} \perp (\vec{v} \vec{w})$
- 3) \vec{u} et \vec{v} deux vecteurs du plan non nuls tel que $|\vec{u}.\vec{v}| = ||\vec{u}|| ||\vec{v}||$ alors :
 - a) $\vec{u} \perp \vec{v}$
- b) \vec{u} et \vec{v} sont colinéaires
- c) \vec{u} et \vec{v} ne sont pas collinaires.

Exercice 2

Soit OAB un triangle équilatéral de centre de gravité G et de coté AB = 9, on désigne par H le projeté orthogonal de O sur (AB)

- 1) a) Calculer OH puis OG.
 - **b)** Calculer \overrightarrow{OA} . \overrightarrow{OB} et \overrightarrow{OA} . \overrightarrow{OH}
- 2) Calculer \overrightarrow{GH} . \overrightarrow{GA} ; \overrightarrow{GH} . \overrightarrow{GB} et \overrightarrow{GA} . \overrightarrow{GB} .
- 3) Montrer que $GO^2 + \overrightarrow{GO} \cdot \overrightarrow{GA} + \overrightarrow{GO} \cdot \overrightarrow{GB} = 0$

Exercice 3

On considère un parallélogramme ABCD tel que AB=5; AD=4 et $\widehat{BAD}=\frac{\pi}{3}$

Soit J le milieu de [AD] et H le projeté orthogonal de D sur [AB]

- 1) Calculer $\overrightarrow{HA}.\overrightarrow{DH}$ et $\overrightarrow{AD}.\overrightarrow{CB}$
- 2) Calculer \overrightarrow{AB} . \overrightarrow{AD} et en déduire \overrightarrow{AH}
- 3) Montrer que \overrightarrow{AB} . $\overrightarrow{AD} = \overrightarrow{AD^2} \overrightarrow{DB}$. \overrightarrow{DA}
- **4)** En déduire \overrightarrow{IB} . \overrightarrow{DA} et $\cos(\widehat{ADB})$
- 5) a) Montrer que pour tout point M du plan on a : $MA^2 + MD^2 = 2MI^2 + 8$
 - b) Déterminer l'ensemble (C) des points M du plan tel que $MA^2 + MD^2 = 16$

Exercice 4

Soit ABC un triangle et I le milieu de [BC] avec IB = IC = 2; IA = 3 et $\widehat{AIB} = \frac{\pi}{3}$

- 1) a) Montrer que $\overrightarrow{AB}.\overrightarrow{AC} = AI^2 IB^2$
 - **b)** En déduire \overrightarrow{AB} . \overrightarrow{AC}
- 2) a) Calculer $AB^2 + AC^2$ et $AB^2 AC^2$
 - b) En déduire AB et AC
 - c) Donner la valeur exacte de $\cos(\widehat{BAC})$
- 3) Soit *H* le projeté orthogonal de *A* sur (*BC*)
 - a) Montrer que : $AB^2 AC^2 = 2\overrightarrow{BC} \cdot \overrightarrow{IH}$
- b) En déduire *IH*

Exercice 5

On construit ci-contre un trapèze ABCD rectangle en C et E est un point du segment DC tel que :

$$AD = 3$$
; $DE = 1$ et $DC = BC = 4$

- 1) Montrer que $(\overrightarrow{ED} + \overrightarrow{DA}) \cdot (\overrightarrow{EC} + \overrightarrow{CB}) = \overrightarrow{ED} \cdot \overrightarrow{EC} + \overrightarrow{DA} \cdot \overrightarrow{CB}$
- 2) a) Calculer \overrightarrow{ED} . \overrightarrow{EC} et \overrightarrow{DA} . \overrightarrow{CB} . En déduire que \overrightarrow{EA} . $\overrightarrow{EB} = 9$
 - **b)** Montrer que EA = 10 et EB = 5 puis calculer cos \widehat{AEB} .
 - c) Montrer que $AB = \sqrt{17}$
- 3) Soit H le projeté orthogonal de A sur (BC).

Montrer $\overrightarrow{CA} \cdot \overrightarrow{CB} = 12$ et $\overrightarrow{CA} \cdot \overrightarrow{CE} = 12$. En déduire que $(CA) \perp (BE)$.

- 4) Soit O le milieu du segment [BD] et $\mathcal{C} = \{M \in P \text{ tel que } MB^2 + MD^2 = 26\}$.
 - a) Vérifier que $A \in \mathcal{T}$.
 - b) Montrer que pour tout $M \in P$; on a : $MB^2 + MC^2 = 2MO^2 + \frac{MD^2}{2}$
 - c) Déduire l'ensemble T.
- 5) Soient les points F et G tel que $\overrightarrow{AF} = \overrightarrow{DE}$ et $\overrightarrow{AG} = \frac{1}{3}\overrightarrow{AD}$

On considère le repère orthonormé directe $(A, \overrightarrow{AF}, \overrightarrow{AG})$ et on posant M de coordonnées (x, y). Déterminer une équation cartésienne de l'ensemble T.

Exercice 6

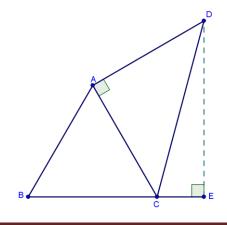
Soit AICJ est un rectangle tel que $AC = 4\sqrt{3}$ et B un point de [IA] tel que AB = BC = 4

- 1) Montrer que \overrightarrow{AB} . $\overrightarrow{BC} = -8$
- 2) En déduire que cos $\widehat{BAC} = -\frac{1}{2}$ et que BI = 2
- 3) Montrer que \overrightarrow{CB} . $\overrightarrow{CI} = 121$ et \overrightarrow{CB} . $\overrightarrow{CJ} = 12$.
- 4) En déduire que $(CB) \perp (II)$
- 5) Soient $\Delta = \{M \in P/MA^2 MB^2 = 32\}$ et $\Gamma = \{M \in P/MA^2 + MB^2 = 64\}$.
 - a) Montrer que $M \in \Delta$ signifie que \overrightarrow{OM} . $\overrightarrow{AB} = 16$ avec O = A * B.
 - b) Montrer que $C \in \Delta$ puis déterminer Δ .
 - c) Montre que Γ est le cercle de centre O passant par C.

Exercice 7

Soit ABC un triangle équilatéral de côté 2 et ACD un triangle isocèle rectangle en A. (voir figure)

- 1) Montrer que $\overrightarrow{AD} \cdot \overrightarrow{AB} = -2\sqrt{3}$
 - **b)** Montrer que $\overrightarrow{AD} \cdot \overrightarrow{CB} = \overrightarrow{AD} \cdot \overrightarrow{AB}$
 - c) Montrer alors que \overrightarrow{CD} . $\overrightarrow{CB} = 2(1 \sqrt{3})$
 - d) En déduire que $CE = \sqrt{3} 1$
 - e) Montrer que $DE = \sqrt{3} + 1$



- 2) Soit O le milieu de [BC] et F le point de [OA] tel que OF = 1
 - a) Déterminer les coordonnées des points A, B, E et D dans le repère $(O, \overrightarrow{OC}, \overrightarrow{OF})$
 - **b)** Montrer alors que $\overrightarrow{AE} \perp \overrightarrow{BD}$
- 3) Soient $\Delta = \{M \in P/MC^2 MB^2 = -4\sqrt{3}\}\$ et $\Gamma = \{M \in P/MC^2 + MB^2 = 8\}$
 - a) Montrer que $M \in \Delta$ équivaut à $2\overrightarrow{MO}$. $\overrightarrow{BC} = -4\sqrt{3}$
 - **b)** Vérifier que $E \in \Delta$
 - c) Montrer $\Delta = (DE)$
 - d) Montrer Γ que est le cercle de centre O et de rayon $\sqrt{3}$.

Exercice 8

Dans un plan muni d'un repère orthonormé on considère les points :

$$A(-1,1)$$
, $B(-2,3)$ et $C(\frac{5}{2},4)$

- 1) a) Calculer AB et AC
 - b) Calculer \overrightarrow{AB} . \overrightarrow{AC} et donner la valeur de : $cos(\widehat{BAC})$
- 2) a) Soit G le barycentre des points pondérés (A, 1) et (B, 2), calculer GA et G
 - **b)** Montrer que : $\forall M \in P$ on a : $MA^2 + 2MB^2 = 3MG^2 + GA^2 + 2GB^2$
 - c) En déduire l'ensemble (E) des points M du plan tel que : $MA^2 + 2MB^2 = \frac{22}{3}$

Exercice 9

Dans un plan muni d'un repère orthonormé on considère les points :

$$A(2,2)$$
; $B(1,1)$ et $C(4,0)$

- 1) Montrer que le triangle ABC est rectangle en A
- 2) Calculer les distances AB, AC et BC
- 3) Calculer \overrightarrow{CA} . \overrightarrow{CB} et en déduire la valeur de $\cos(\widehat{ACB})$
- 4) On désigne par H le projeté orthogonal du point A sur la droite (BC) et par I = A * B
 - a) Calculer les distances IH et AH
 - b) Déterminer les coordonnées du point H.

Exercice 10

Dans un plan muni d'un repère orthonormé on considère les points :

$$A(4,0)$$
; $B(2,2\sqrt{3})$ et $C(0,-4)$

- 1) a) Vérifier que \overrightarrow{CA} . $\overrightarrow{CB} = 8\sqrt{3}(1+\sqrt{3})$
 - b) Vérifier que $CA = 4\sqrt{2}$ et $CA = 4\sqrt{2 + \sqrt{3}}$
 - c) Montrer que $\cos(\widehat{ACB}) = \frac{\sqrt{3}}{2}$ et en déduire la valeur de \widehat{ACB}
- 2) a) Calculer \overrightarrow{AD} . \overrightarrow{AB}
 - b) En déduire la nature du triangle ADB
- 3) a) Trouver une équation cartésienne de l'ensemble $E = \{M \in P / \overrightarrow{MA}.\overrightarrow{AC} = 12\}$

déterminer alors E

b) Trouver une équation cartésienne de l'ensemble $F=\{M\in P/\,MA^2+MC^2=20\}$ déterminer alors E

Exercice 11

Soit ABCD est un carré de côté 3.

On désigne par E et F les points tels que $\overrightarrow{AE} = \frac{2}{3}\overrightarrow{AB}$ et $\overrightarrow{CF} = -\frac{2}{3}\overrightarrow{CB}$

- 1) a) Montrer que \overrightarrow{DA} . $\overrightarrow{DF} = -6$ et \overrightarrow{EA} . $\overrightarrow{DF} = -6$
 - b) En déduire que les droites (DE) et (DF) sont perpendiculaires.
- 2) a) Montrer que \overrightarrow{FE} . $\overrightarrow{FA} = 28$
 - b) Calculer les distance FE et FA. En déduire $cos E\widehat{F}A$.
- 3) On désigne par I le milieu de [EF].

Soit $\Gamma = \{ M \in P \text{ tel que } \overrightarrow{ME}. \overrightarrow{MF} = 6 \}$

- a) Montrer que Γ est le cercle de centre I et de rayon $\frac{5\sqrt{2}}{2}$
- **b)** Montrer que $\in \Gamma$. Construire alors Γ .
- c) La droite (AF) recoupe Γ en , soit A' le point diamétralement opposé à A sur le cercle Γ . Montrer que \overrightarrow{FA} . $\overrightarrow{FH} = -6$
- 4) Soit $\mathcal{E}_k = \{M \in \mathcal{P}/5MC^2 2MB^2 = k\}$, où k est un paramètre réel.
 - a) Vérifier que F est le barycentre des points pondérés (C, 5) et (B, -2)
 - b) Discuter selon k la nature de l'ensemble \mathcal{E}_k .
- 5) Soit N un point de (AD) et N' le point de (DC) vérifiant \overrightarrow{EN} . $\overrightarrow{EN'} = -DE^2$ On pose J = N * N'
 - a) Montrer que $\overrightarrow{DE} \cdot \overrightarrow{DJ} = DE^2$.
 - b) En déduire que lorsque N varie sur (AD), J varie sur une droite Δ que l'on précisera.
 - c) Pour quelle valeur de k, Δ est elle tangente à \mathcal{E}_k ?