Nombres Complexes 3ème Sc Expérimentales

Dans tous les exercices le plan P complexe est rapporté à un repère orthonormé direct $(\mathbf{0}, \overrightarrow{\mathbf{u}}, \overrightarrow{\mathbf{v}})$.

Exercice 1

1) Soient les nombres complexes : $z_1 = 1 - 2i$ et $z_2 = -3 + i$

Ecrire sous forme algébrique les nombres complexes suivants : $iz_1 - 2z_2$; $(z_1)^2$; $z_1 \times z_2$ et $\frac{z_1}{z_2}$

- 2) Soit z = 2 + iy où y est un réel.
 - a) Déterminer y pour que z^2 soit imaginaire pur.
 - b) Déterminer y pour que (1+i)z soit un réel.

Exercice 2

On donne les points A et B d'affixes respectives : $\mathbf{z}_A = \frac{3+i}{1+i}$ et $\mathbf{z}_B = (-3+4i)\left(\frac{1-2i}{5}\right)$

- 1) Ecrire z_A et z_B sous la forme algébrique.
- 2) Placer les points A et B.
- 3) Montrer que le triangle *OAB* est isocèle.
- 4) Déterminer l'affixe du point C tel que OACB soit un carré.

Exercice 3

- 1) Ecrire sous forme algébrique les nombres complexes suivants : $\frac{8-i}{1-2i}$; $\frac{10}{3-i}$ et $\left(\frac{i-1}{2}\right)(1+i)^2$
- 2) Marquer les points A, B et C d'affixes respectives : 2 + 3i, 3 + i et -1 i
- 3) a) Montrer que ABC est un triangle rectangle en B.
 - b) Trouver l'affixe du point D tel que ABCD soit un rectangle.
- 4) a) On pose I = A * C, trouver l'affixe du point I.
 - b) Déterminer et construire les ensembles suivants :

$$E = \{M(z) \in P/|z-2-3i| = |z+1+i|\}$$
 et $F = \{M(z) \in P/|2\overline{z}-1+2i| = 5\}$

Exercice 4

Une seule des réponses proposées est exacte.

1) Soit z un nombre complexe, le conjugué de 1 + iz est :

a)
$$1 - iz$$

b)
$$1 - i\overline{z}$$

c)
$$1 + i\overline{z}$$

2) La forme algébrique de $(1+i)^2(2-3i)$ est :

(a)
$$6 - 4i$$

b)
$$6 + 4i$$

$$(c)$$
 $-6 - 4i$

3) La forme algébrique de $\frac{8+i}{1+2i}$ est :

a)
$$-2 + 3i$$

b)
$$2 + 3i$$

$$c) 2 - 3i$$

Exercice 5

- 1) Soient les points $z_A = 2 + i$; $z_B = -1$ et $z_C = 3 2i$.
 - a) Placer les points A, B, et C.
 - b) Déterminer l'affixe du point I milieu du segment [BC].

- 2) a) Calculer les distances AB, AC et BC.
 - b) Déduire la nature du triangle ABC.
- 3) a) Déterminer l'affixe du point D symétrique du point A par rapport à J.
 - b) Quelle est la nature du quadrilatère ABCD? Justifier.

Soient les points A, B, C et I d'affixes respectives : $z_A = -2i$; $z_B = 1 + i$; $z_C = 4 + 2i$ et $z_I = 2$.

- 1) a) placer les points A, B, C et I.
 - b) Vérifier que I est le milieu du segment [AC].
- 2) Montrer que le triangle ABC est isocèle.
- 3) Déterminer l'affixe z_D du point D pour que ABCD soit un losange.
- 4) a) A tout point M d'affixe $z \neq 4 + 2i$ on associe le point M' d'affixe : $z' = \frac{2z + 4i}{z 4 2i}$

Montrer que :
$$OM' = \frac{2AM}{CM}$$

b) Montrer que si le point M décrit la médiatrice du segment [AC] alors le point M' décrit un cercle que l'on précisera.

Exercice 7

A tout M d'affixe $z \neq i$ on associe le point M' d'affixe $z' = \frac{z+1}{z-i}$ et soient les points : A(-1) et B(i).

- 1) a) Montrer que $|z'| = \frac{AM}{BM}$
 - b) En déduire l'ensemble Δ des points M(z) tel que |z'|=1.
- 2) Déterminer et construire les ensembles suivants
 - a) $E = \{M(z) \in P/z' \in \mathbb{R}\}$
 - b) $E = \{M(z) \in P/z' \text{ soit imaginaire pur}\}.$

Exercice 8

Soient les points A, B et C d'affixes respectives : $z_A = -i$, $z_B = \sqrt{3} + i$ et $z_C = -\sqrt{3} + i$.

- 1) a) Donner la forme trigonométrique de z_A , z_B et z_C .
 - b) Placer les points A, B et C.
 - c) Déterminer une mesure de l'angle orienté $(\overrightarrow{OB}, \overrightarrow{OC})$.
- 2) a) Déterminer l'affixe du point I milieu du segment [BC].
 - b) Déterminer l'affixe du point D tel que ACBD soit un parallélogramme.
 - c) Montrer que ACBD est un losange.

Exercice 9

- 1) Placer dans le plan complexe les points A, B, C et D d'affixes respectives : i; 1-i; 5+i et 4+3i
- 2) Montrer que ABCD est un rectangle.
- 3) A tout point M du plan d'affixe z distinct de 1-i on associe le point M' d'affixe $z'=\frac{iz+1}{z-1+i}$

- a) Montrer que $|z'| = \frac{AM}{BM}$
- b) En déduire que si M' appartient au cercle trigonométrique alors M appartiendra à une droite que l'on précisera.
- 4) a) Montrer que (z'-i)(z-1+i)=2+i et que $AM'\times BM=\sqrt{5}$
- b) Montre que si M appartient à un cercle de centre B et de rayon 1 alors M' appartient à un cercle que l'on précisera.

On donne les points A, B et C d'affixes respectives : $z_A = -1 + 4i$, $z_B = 2 + 2i$ et $z_C = -i$

- 1) Ecrire sous forme algébrique les complexes : $z_A z_B$ et $\frac{z_B}{z_A}$
- 2) a) Placer les points A, B et C.
 - b) Montrer que le triangle ABC est isocèle et rectangle.
 - c) Déterminer l'affixe du point D tel que ABCD soit un carré.
- 3) Soit le point E d'affixe $z_E = 1 + i\sqrt{3}$.
 - a) Donner le module et un argument de z_B et z_E .
 - b) Déduire le module et argument de $Z_B Z_E$.
 - c) Ecrire sous forme algébrique le complexe : $z_B z_E$.
 - d) En déduire $\cos \frac{7\pi}{12}$ et $\sin \frac{7\pi}{12}$
- 4) Déterminer l'ensemble des points M d'affixe z tel que |z + i| = |z|.

Exercice 11

On donne les points A, B, C et D d'affixes respectives : $z_A=2\sqrt{3}+2i$, $z_B=-2-2i$

$$z_C = -2 + 2i\sqrt{3}$$
 et $z_D = 2 - 2i\sqrt{3}$

- 1) a) Placer les points A, B, C et D.
 - **b)** Calculer $\frac{z_A z_C}{z_A z_D}$
 - c) En déduire le module et un argument de $\frac{z_A z_C}{z_A z_D}$
 - d) Quelle est la nature du triangle ACD.
- 2) a) Déterminer le module et un argument de z_C et z_B .
 - b) Ecrire sous la forme algébrique $\frac{z_C}{z_B}$
 - c) Ecrire sous la forme trigonométrique de $\frac{z_C}{z_B}$
 - d) En déduire $\cos \frac{7\pi}{12}$ et $\sin \frac{7\pi}{12}$
- 3) Résoudre dans \mathbb{R} l'équation $(1+\sqrt{3})\cos 2x+(1-\sqrt{3})\sin 2x=2$.
- 4) A tout point $M \neq D$ d'affixe z on associe le point M' d'affixe $z' = \frac{z-z_C}{z-z_D}$

- a) Vérifier que $(z'-1)(z-2+2i\sqrt{3})=4-4i\sqrt{3}$.
- b) Déduire l'ensemble des point M' lorsque M décrit le cercle de centre D et de rayon 4.

Une seule des réponses proposées est exacte.

1) Si z = 2 - 2i(1 + 3i) alors:

a)
$$Re(z) = 2$$

b)
$$\overline{z} = 2 + 2i(1 + 3i)$$

c)
$$Im(z) = -2$$

2) Si z est un nombre complexe dont un argument est $\frac{\pi}{2} + 2k\pi$; $k \in \mathbb{Z}$

alors un argument de $(1-i)^2z$ est :

a)
$$-\pi + 2k\pi$$
; $k \in \mathbb{Z}$

b)
$$0+2k\pi$$
 ; $k\in\mathbb{Z}$

$$(c)$$
 $-\frac{\pi}{2}+2k\pi$; $k\in\mathbb{Z}$

3) Si $z = (\sqrt{3} - i) - 2i$ alors |z| est égale à:

b)
$$2\sqrt{3}$$

c)
$$2 - 2\sqrt{3}$$

Exercice 13

Répondre par Vrai ou Faux.

- 1) Soit z = 2i 3 donc $\overline{z} = 3 2i$.
- 2) Soit z = -1 i donc $|z^8| = 16$
- 3) Soit z un nombre complexe de module 1 et dont un argument est $\frac{\pi}{4}$ donc $z^{12} = -1$.
- 4) Soit z un nombre complexe de module $\sqrt{2}$ et dont un argument est $\frac{6\pi}{4}$ donc z est imaginaire pur.
- 5) Soit z un nombre complexe dont un argument est $-\frac{\pi}{6}$ et ayant une partie réelle égale à $4\sqrt{3}$ donc |z| = 8.
- 6) Soit z un nombre complexe donc $|z+1-i| = |\overline{z}+1+i|$.
- 7) Soit z et z' deux nombres complexes si |z| = |z'| donc z = z'.
- 8) Soit z et z' deux nombres complexes on a toujours |z + z'| = |z| + |z'|.

Exercice 14

On pose $u = 1 + i\sqrt{3}$ et v = 1 + i

- 1) Ecrire sous la forme algébrique $u \times v$.
- 2) a) Ecrire u et v sous la forme trigonométrique.
 - b) Ecrire $u \times v$ sous la forme trigonométrique.
- 3) En déduire $\cos \frac{7\pi}{12}$ et $\sin \frac{7\pi}{12}$

Exercice 15

Soient les points A et B d'affixes respectives : $z_A = 2 - 2i$ et $z_B = 2 + 2i$

- 1) Placer A et B.
- 2) Qu'elle est la nature du triangle OAB.
- Soit le point C d'affixe $z_C = \left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)(2-2i)$.

- a) Ecrire $z_{\mathcal{C}}$ sous forme algébrique.
- b) Ecrire $\frac{1}{2} + i \frac{\sqrt{3}}{2}$ et 2 2i sous forme trigonométrique.
- 4) a) Ecrire z_C sous forme trigonométrique.
 - b) En déduire $\cos \frac{\pi}{12}$ et $\sin \frac{\pi}{12}$
- 5) a) Comparer OA et OC et donner une mesure de l'angle $(\overrightarrow{OA}; \overrightarrow{OC})$
 - b) En déduire la nature du triangle OAC.

Soient les nombres complexes $z_1 = -\sqrt{2} + i\sqrt{2}$ et $z_2 = -\sqrt{2} - i\sqrt{2}$

- 1) Mettre z_1 et z_2 sous forme trigonométrique.
- 2) Placer alors les points A, B et C d'affixes respectives 2, z_1 et z_2
- 3) Déterminer sous forme algébrique l'affixe du point J = A * B
- 4) Calculer OI et une mesure de (\vec{u}, \vec{OI}) .
- 5) Donner alors z_J sous forme trigonométrique et en déduire les valeurs de $\cos\frac{3\pi}{8}$ et $\sin\frac{3\pi}{8}$

Exercice 17

Soient les points $z_A = -i$, $z_B = i$ et $z_C = 4i$. A tout point M d'affixe $z \neq i$ on associe le point M' d'affixe $z' = \frac{iz-4}{z+i}$

- 1) a) Montrer que si $M \neq A$ alors on a $OM' = \frac{CM}{AM}$
- b) En déduire que si M' est sur le cercle de centre O et de rayon 1 alors le point M varie sur une droite que l'on déterminera.
- 2) a) Montrer que si $z \neq i$ alors (z'-i)(z+i) = -3 et en déduire que : $AM \times BM' = 3$.
- b) Montrer alors que si le point M appartient au cercle $\mathcal T$ de centre A et de rayon 2 alors le point M' appartient à un cercle $\mathcal T$ dont on précisera le centre et le rayon.
- 3) a) Montrer que si $M \neq A$ et $M \neq B$ alors $(\overrightarrow{u}, \overrightarrow{OM'}) = \frac{\pi}{2} + (\overrightarrow{AM}, \overrightarrow{CM'}) + 2k\pi$; $k \in \mathbb{Z}$.
- b) En déduire que si M appartient au segment $[AB]\setminus\{A,B\}$ alors M' appartient à une droite que l'on précisera.

Exercice 18

On donne les points A et B d'affixes respectives : $z_1 = 1 + i\sqrt{3}$ et $z_2 = 1 - i$.

- 1) Ecrire z_1 et z_2 sous la forme trigonométrique.
- 2) Ecrire $z_1 \times z_2$ sous la forme trigonométrique et en déduire $\cos \frac{\pi}{12}$ et $\sin \frac{\pi}{12}$
- 3) A tout point $M \in P \setminus \{B\}$ et d'affixe z, on associe le point M' d'affixe $z' = \frac{z-z_1}{z-z_2}$
 - a) Déterminer et construire l'ensemble E des points M tel que z' soit imaginaire pur.
 - b) Déterminer et construire l'ensemble F des points M tel que z' soit réel.

- c) Déterminer l'ensemble G des points M tel que |z'| = 1.
- 4) Soit *I* le point d'affixe 1. Montrer que pour tout point $\in P \setminus \{B\}$, $IM' \times BM = 1 + \sqrt{3}$. Que décrit le point M' lorsque M décrit le cercle de centre B et de rayon 1?

- 1) On donne $z_1 = 1 + i$, $z_2 = 1 i\sqrt{3}$ et $z_3 = 1 i$.
 - a) Ecrire z_1 , z_2 et z_3 sous la forme trigonométrique.
 - b) En déduire la forme trigonométrique de $Z = \frac{z_1^2 \times z_2^2}{z_3^3}$
- 2) a) Ecrire Z sous forme algébrique.
 - b) En déduire les valeurs exactes de $\cos \frac{7\pi}{12}$ et $\sin \frac{7\pi}{12}$
- 3) Résoudre dans $[0, 2\pi[; (\sqrt{2} \sqrt{6}) \cos x + (\sqrt{2} + \sqrt{6}) \sin x = 2]$