Fonctions réciproques 4^{ème} Sc Expérimentales

Dans tous les exercices le plan est rapporté à un repère orthonormé $(0, \vec{\iota}, \vec{j})$.

<u>Exercice 1</u>

Soit f la fonction définie sur $[0, +\infty[$ par $: f(x) = \frac{4-x^2}{x^2+1}$ et soit C_f sa courbe représentative.

- 1) Montrer que f est dérivable sur $[0, +\infty[$ et que $\forall x \in [0, +\infty[$; $f'(x) = \frac{-10x}{(x^2+1)^2}$
- 2) Dresser le tableau de variation de f sur $[0, +\infty[$ et préciser le nombre dérivé de f à droite en 0.
- 3) Montrer que f réalise une bijection de $[0, +\infty[$ sur]-1, 4].
- 4) Soit g la réciproque de f.
 - a) Donner le tableau de variation de g
 - **b)** Calculer g(0) et g'(0).
 - c) Montrer que g est dérivable sur]-1, 4[on précisera la dérivabilité de g à gauche en 4
 - d) Expliciter g(x) pour tout $x \in]-1, 4]$.

- **Exercice 2**1) Soit la fonction f définie sur]-4, $+\infty[$ par $f(x) = \frac{2x+3}{x+4}$ soit C_f sa courbe représentative
 - a) Calculer $\lim_{x \to -4^+} f(x)$ et $\lim_{x \to +\infty} f(x)$. Interpréter les résultats graphiquement.
 - b) Dresser le tableau de variation de f
- 2) a) Montrer que f admet une fonction réciproque f^{-1} définie sur un intervalle f que l'on précisera.
 - **b)** Calculer $f^{-1}\left(-\frac{1}{2}\right)$ et $(f^{-1})'\left(-\frac{1}{2}\right)$
 - c) Expliciter $f^{-1}(x)$ pour tout $x \in J$.
- 3) a) Etudier la position relative de C_f et la droite $\Delta : y = x$
 - b) Tracer C_f ; $C_{f^{-1}}$ et Δ
- 4) Soit la suite (U_n) définie sur N par $U_0 = -1$ et $U_{n+1} = f(U_n)$.
 - a) Montrer que $\forall n \in \mathbb{N}$ on $a:-1 \leq U_n \leq 1$
 - b) Montrer que la suite (U_n) est croissante.
 - c) En déduire que la suite (U_n) est convergente et calculer sa limite.
- 5) Soit la suite (V_n) définie sur \mathbb{N} par : $V_n = \frac{U_n 1}{U_n + 3}$
 - a) Montrer que (V_n) est une suite géométrique dont on précisera la raison et le premier terme.
 - b) En déduire $\lim_{n\to+\infty} V_n$ et $\lim_{n\to+\infty} \sum_{n\to+\infty} V_k$
 - c) Exprimer U_n en fonction de n et retrouver la limite de (U_n) .

Exercice 3

Soit f la fonction définie sur $[0, +\infty[$ par $: f(x) = x^2 - 1 + \sqrt{x^2 + x}$ et soit C_f sa courbe représentative.

- 1) Montrer que f est continue sur $[0, +\infty]$
- 2) a) Etudier la dérivabilité de f à droite en 0 et interpréter géométriquement le résultat obtenu
 - b) Montrer que f est dérivable sur]0, $+\infty[$ et calculer f'(x).
 - c) En déduire que $\forall x \in]0$, $+\infty[; f'(x) > 0$.
- 3) a) Dresser le tableau de variation de f
 - b) Montrer que f est une bijection de $[0, +\infty]$ sur $[-1, +\infty]$.
- 4) Montrer que l'équation f(x) = 0 admet dans $[0, +\infty[$ une unique solution α et que $\alpha \in]0, 1[$
- 5) Soit f^{-1} la réciproque de f.
 - a) Donner le sens de variation de f^{-1}
 - b) Montrer que f^{-1} est continue et dérivable sur $[-1,+\infty]$

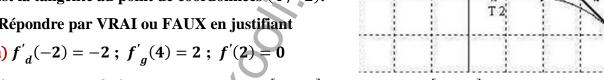
Le graphique ci-contre est celui d'une fonction f définie, continue et dérivable sur [-2, 4].

 T_1 est la demi-tangente au point d'abscisse 1.

 T_2 est la tangente au point de coordonnées (2, -1).

 T_3 est la tangente au point de coordonnées (4, -2)

a)
$$f'_{d}(-2) = -2$$
; $f'_{a}(4) = 2$; $f'(2) = 0$



- b) La fonction f réalise une bijection de [-2, 4] sur l'intervalle [-2, 3].
- 2) Justifier que la fonction réciproque f^{-1} de f n'est pas dérivable au point -1.
- 3) Calculer $(f^{-1})'_{d}(3)$ et $(f^{-1})'_{g}(-2)$.
- 4) Tracer la courbe C' de la fonction f^{-1} .

Exercice 5

Soit f la fonction définie sur $[1, +\infty[$ par $f(x) = \frac{2}{\sqrt{1+x}}$ et soit C_f sa courbe représentative dans un repère orthonormé $(0, \vec{\iota}, \vec{\jmath})$

- 1) a) Dresser le tableau de variations de f.
 - b) Montrer que f réalise une bijection de $[1, +\infty[$ sur un intervalle J que l'on précisera.
 - c) Expliciter $f^{-1}(x)$ pour tout $x \in J$.
 - d) Montrer que l'équation f(x) = x admet une unique solution α dans $[1, +\infty[$ et que $\alpha \in]1, 2[$
- 2) Tracer C_f et $C_{f^{-1}}$ les courbes de f et f^{-1} tout en précisant la demi tangente à C_f au point d'abscisse 0.
- 3) Montrer que pour tout $x \in [1, 2]$ on a : $|f'(x)| \le \frac{1}{2\sqrt{2}}$
- Soit (U_n) la suite sur $\mathbb N$ par $egin{cases} U_0 = 1 \ U_{n+1} = f(U_n) \end{cases} orall n \in \mathbb N$
 - a) Montrer pour $\forall n \in \mathbb{N}$ on a: $1 \leq U_n \leq 2$

- b) Montrer que $\forall n \in \mathbb{N}$ on a : $|U_{n+1} \alpha| \leq \frac{1}{2\sqrt{2}} |U_n \alpha|$
- c) Montrer que $\forall n \in \mathbb{N}$ on a : $|U_n \alpha| \le \left(\frac{1}{2\sqrt{2}}\right)^n$. En déduire que la suite (U_n) converge vers une limite que l'on précisera.

Soit f la fonction définie sur par : $f(x) = -x + \frac{2}{\sqrt{x+1}}$ et soit C_f sa courbe représentative.

- 1) Déterminer le domaine de définition de f.
- 2) a) Calculer $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to -1^+} f(x)$
 - b) Dresser le tableau de variation de f
- 3) a) Donner une équation cartésienne de la tangente T à la courbe \mathcal{C}_f au point d'abscisse 0.
 - b) Tracer C_f et T
- 4) Montrer que l'équation f(x) = x admet dans]-1, $+\infty[$ une unique solution α et que $1 < \alpha < 1$, 5
- 5) a) Montrer que f réalise une bijection de]-1, $+\infty[$ sur un intervalle J que l'on déterminera.
 - b) Montrer que f^{-1} est dérivable sur J
 - c) Calculer en fonction de α ; $(f^{-1})'(\alpha)$.
 - d) Tracer la courbe C' de la fonction f^{-1} .

Exercice 7

Soit la fonction f définie sur \mathbb{R} par $\begin{cases} f(x) = \frac{-x}{2x+1} & \text{si } x \ge 0 \\ f(x) = -x + \sqrt{x^2 - x} & \text{si } x < 0 \end{cases}$

- 1) a) Etudier la continuité de f en 0.
 - b) Etudier la dérivabilité de f en 0. Interpréter le résultat graphiquement.
- 2) Calculer $\lim_{x \to -\infty} f(x)$ et $\lim_{x \to +\infty} f(x)$. Interpréter le résultat graphiquement.
- 3) a) Montrer que $\forall x > 0$ on a : $f'(x) = \frac{-1}{(2x+1)^2}$
 - **b)** Montrer que $\forall x < 0$ on a : $f'(x) = -1 + \frac{2x-1}{2\sqrt{x^2-x}}$
 - c) Dresser le tableau de variation de f.
- 4) Soit g la restriction de f à l'intervalle $]-\infty$, 0[.
 - a) Montrer que g admet une fonction réciproque g^{-1} définie sur un intervalle J que l'on déterminera.
 - b) Expliciter $g^{-1}(x)$ pour tout $x \in J$.
 - c) Tracer les courbes représentatives de g et g^{-1} .

Exercice 8

Soit la fonction f définie sur]0, 1] par $f(x) = \frac{2+\sqrt{1-x^2}}{x}$ et soit C_f sa courbe représentative.

- 1) Etudier la dérivabilité de f à gauche en 1 et interpréter le résultat graphiquement.
- 2) Montrer que f est dérivable sur]0, 1[et déterminer f'(x) pour tout $x \in]0$, 1[.
- 3) a) Dresser le tableau de variation de f.

- b) Tracer C_f (on prendra $||\vec{i}|| = ||\vec{j}|| = 2 \ cm$).
- 4) a) Montrer que f admet une fonction réciproque f^{-1} définie sur un intervalle J que l'on déterminera.
 - b) Montrer que f^{-1} est dérivable sur]0,2]
 - c) Expliciter $f^{-1}(x)$ pour tout $x \in J$.
 - d) Tracer dans le même repère C' la courbe de f^{-1}

Pour chaque question indiquer la réponse exacte.

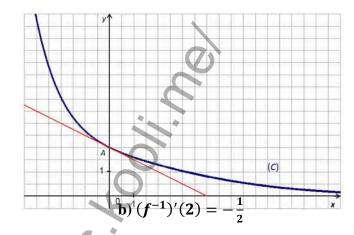
1) Soit $f(x) = \sqrt{\frac{x}{x-2}}$ la bijection de]2, $+\infty$ [sur]1, $+\infty$ [

a)
$$(f^{-1})(y) = \frac{-2y^2}{1-y^2}$$

b)
$$(f^{-1})(y) = \frac{2y^2}{1-y^2}$$

c)
$$(f^{-1})(y) = \frac{-2y^2}{y^2 - 1}$$

2) La courbe (C) ci-dessous représente une fonction f définie sur $\mathbb R$



a)
$$(f^{-1})'(2) = -2$$

c)
$$(f^{-1})'(2) = 2$$

Exercice 9

Soit f la fonction définie sur $\left]0, \frac{\pi}{2}\right]$ par $f(x) = \frac{1}{\sin x}$ et soit C_f sa courbe représentative.

- 1) Etudier les variations de f et construire C_f .
- 2) Montrer que f réalise une bijection de $\left]0, \frac{\pi}{2}\right]$ sur $\left[1, +\infty\right[$.
- 3) On désigne par h la fonction réciproque de f.
 - a) Etudier la dérivabilité de h à droite en 1.
 - b) Montrer que h est dérivable sur $]1, +\infty[$.
 - c) Expliciter h'(x) pour tout $x \in]1$, $+\infty[$.
- 4) a) Calculer h(1), $h(\sqrt{2})$ et h(2)

Exercice 10

Soit la fonction f définie sur]0, 1] par : $f(x) = \frac{1}{2} \sqrt{\frac{1}{x} - 1}$ et soit (C) sa courbe représentative.

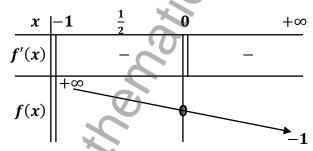
- 1) a) Etudier la dérivabilité de f à gauche en 1 et interpréter le résultat graphiquement.
- b) Montrer que f est dérivable sur]0,1[et pour tout $x \in]0,1[$ on $a:f'(x)=\frac{-1}{4x^2\sqrt{\frac{1}{x}-1}}$
 - c) Dresser le tableau de variation de f.

- 2) a) Montrer que f réalise une bijection de [0,1] sur un intervalle f que l'on précisera.
 - b) Montrer f admet une fonction réciproque f^{-1} et déterminer son domaine de définition.
 - c) Tracer (C) et (C') courbe représentative de f^{-1} .
- 3) Soit g la fonction définie sur $\left[0, \frac{\pi}{2}\right[$ par : $g(x) = f(\cos^2 x)$. Soit $\left(C_g\right)$ sa courbe représentative.
 - a) Montrer que pour tout $x \in \left[0, \frac{\pi}{2}\right]$ on a : $g(x) = \frac{1}{2} \tan x$.
 - b) Montrer que l'équation g(x)=x admet une unique solution α autre que 0 et que $\alpha\in\left[\frac{\pi}{3},\frac{\pi}{2}\right]$.
 - c) Etudier la position relative de la droite Δ : y = x et la courbe (C_g) .
- 4) a) Montrer que g admet une fonction réciproque g^{-1} définie sur un intervalle J que l'on précisera.
 - **b)** Calculer $g^{-1}\left(\frac{\sqrt{3}}{2}\right)$ et $(g^{-1})'\left(\frac{\sqrt{3}}{2}\right)$.
 - c) Montrer que g^{-1} est dérivable sur J et que pour tout $x \in J$ on a : $(g^{-1})'(x) = \frac{2}{4x^2+1}$.
- 5) Soit la suite (U_n) définie sur \mathbb{N} par $U_0 = \frac{\sqrt{3}}{2}$ et $\forall n \in \mathbb{N}$ on $a: U_{n+1} = g^{-1}(U_n)$.
 - a) Montrer que pour tout $n \in \mathbb{N}$ on a : $\frac{\sqrt{3}}{2} \le U_n \le \alpha$.
 - b) Montrer que la suite (U_n) est croissante
 - c) En déduire que la suite (U_n) est convergente et déterminer sa limite.
- 6) Soit la suite S_n définie sur $\left[0, \frac{\pi}{2}\right]$ par $S_n = \sum_{k=0}^n g^{-1}\left(\frac{k+1}{2}\right) g^{-1}\left(\frac{k}{2}\right)$

Montrer que $\lim_{n\to +\infty} S_n = \frac{\pi}{2}$

Exercice 11

On donne ci-dessous le tableau de variations d'une fonction f définie et continue sur]-1, $+\infty[$. La fonction f est dérivable sur]-1, 0[et]0, $+\infty[$ et n'est pas dérivable en 0. On donne f(0)=0



- 1) Déterminer $\lim_{x\to 0^+} \frac{f(x)}{x}$
- 2) Montrer que f réalise une bijection de]-1, $+\infty[$ sur un intervalle J que l'on précisera.
- 3) Soit f^{-1} la fonction réciproque de f, prouver que f^{-1} est dérivable en 0.
- 4) Soit h la fonction définie sur $\left]-\frac{\pi}{2}$, $0\right]$ par $h(x)=f(\sin x)$.

Montrer que $\lim_{x\to 0^-} \frac{h(x)}{x} = +\infty$ et interpréter le résultat graphiquement.

5) a) Quel est le signe de $f'(\sin x)$ pour $x \in \left] -\frac{\pi}{2}$, $0 \right[$ justifier.

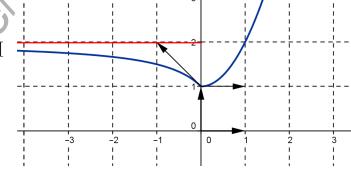
- b) Dresser le tableau de variations de h sur $\left[-\frac{\pi}{2}, 0\right]$.
- **6)** On donne $f\left(-\frac{1}{2}\right) = \frac{2\sqrt{3}}{2}$ et $f'\left(-\frac{1}{2}\right) = -\frac{6\sqrt{3}}{2}$
 - a) Montrer que h réalise une bijection de $\left]-\frac{\pi}{2}$, $0\right]$ sur $\left[0,+\infty\right[$.
 - **b)** Montrer que $h^{-1}\left(\frac{2\sqrt{3}}{2}\right) = -\frac{\pi}{6}$ et que $(h^{-1})'\left(\frac{2\sqrt{3}}{2}\right) = 1$.

La courbe C_f représentée ci-dessous et celle d'une fonction f définie sur \mathbb{R} .

1) Déterminer graphiquement les limites suivantes :

 $\lim_{x \to -\infty} f(x) ; \lim_{x \to +\infty} f(x) ; \lim_{x \to +\infty} \frac{f(x)}{x} \text{ et } \lim_{x \to 0^+} f\left(\frac{1}{x}\right)$

- 2) a) Déterminer graphiquement $f'_{g}(0)$ et $f'_{d}(0)$.
 - b) Déterminer le domaine de dérivabilité de f.
- 3) Dresser le tableau de variation de f sur \mathbb{R} .
- 4) Soit g la restriction de f à l'intervalle $[0, +\infty]$
- a) Montrer que g réalise une bijection de $[0, +\infty[$ sur un intervalle J que l'on déterminera.
- b) Construire la courbe $C_{g^{-1}}\,\,\mathrm{de}\,\,g^{-1}$ puis dresser le tableau de variation de g^{-1}
 - c) Calculer $g^{-1}(2)$ puis $(g^{-1})'(2)$.
 - c) Calculer g''(z) puls (g'')'(z).



e) La fonction g^{-1} est-elle dérivable à droite en 1 ? Justifier votre réponse.

Exercice 13

Soit f la fonction définie sur $\left[0, \frac{\pi}{2}\right]$ par : $f(x) = \sqrt{\tan x}$.

- 1) Etudier la dérivabilité de f en 0^+ et interpréter le résultat graphiquement.
- 2) Montrer que f est une bijection de $\left[0, \frac{\pi}{2}\right]$ sur $\left[0, +\infty\right]$.
- 3) Soit g la fonction réciproque de f.

Montrer que g est dérivable sur $[0, +\infty[$ et que $\forall x \in [0, +\infty[$ on $a: g'(x) = \frac{2x}{1+x^2}$

- 4) Soit h la fonction définie sur]0, $+\infty$ [par $h(x) = g(x) + g(\frac{1}{x})$
 - a) Montrer que h est dérivable sur]0, $+\infty[$ et calculer h'(x) pour tout $x \in]0$, $+\infty[$.
 - b) En déduire que $\forall x \in [0, +\infty[$ on a : $g(x) + g\left(\frac{1}{x}\right) = \frac{\pi}{2}$
 - c) Montrer alors que $\forall x \in \mathbb{R}$ on a : $g(\sqrt{x^2+1}-x)+g(\sqrt{x^2+1}+x)$ est une constante.

Exercice 14

Soit la fonction : $x \mapsto 1 + \sin(\pi x) x \in \left[-\frac{1}{2}, \frac{1}{2}\right]$.

1) a) Montrer que f réalise une bijection de $\left[-\frac{1}{2}, \frac{1}{2}\right]$ sur [0, 2].

- b) Soit f^{-1} la fonction réciproque de f. Montrer que f^{-1} est dérivable sur]0,2[.
- c) Etudier la dérivabilité de f^{-1} en 0.
- **d)** Vérifier que : $\forall x \in]0$, $2[(f^{-1})'(x) = \frac{1}{\pi\sqrt{2x-x^2}}]$
- 2) Soit la fonction g définie sur]0, $2[par:g(x)=f^{-1}(2-x)+f^{-1}(x)]$
 - a) Montrer que g est dérivable sur [0, 2].

 - b) Calculer g'(x) pour tout x de]0, 2[. c) Calculer g(1). En déduire que : $\forall x \in]0$, 2[on a : $f^{-1}(2+x) = -f^{-1}(x)$.
- 3) Soit la suite réelle U définie sur IN^* par : $U_n = \frac{1}{n} \sum_{k=0}^{n} f^{-1} \left(1 + \frac{1}{n+k} \right)$
 - a) Montrer que $\forall n \in IN^*$; $\forall k \in \{0, 1, 2, ..., n\}$ on a :

$$f^{-1}\left(1+\frac{1}{2n}\right) \le f^{-1}\left(1+\frac{1}{n+k}\right) \le f^{-1}\left(1+\frac{1}{n}\right).$$

- b) En déduire que : $\forall n \in IN^*$ on a : $\frac{n+1}{n} f^{-1} \left(\frac{2n+1}{2n}\right) \leq U_n \leq \frac{n+1}{n} f^{-1} \left(\frac{n+1}{n}\right)$
- c) En déduire que la suite U est convergente et déterminer sa limite.

Soit la fonction f définie sur [0, 1] par : $f(x) = \frac{1}{\pi} (1 + \sin(\frac{\pi x^2}{2}))$.

- 1) a) Montrer que f est dérivable sur [0,1].
 - b) Vérifier que $\forall x \in [0, 1]$ on a : $f'(x) = x\cos\left(\frac{\pi x^2}{2}\right)$.
 - c) Dresser le tableau de variation de f.
- 2) a) Montrer que f réalise une bijection de [0, 1] sur $\left[\frac{1}{\pi}, \frac{2}{\pi}\right]$.
 - b) Montrer que la fonction f^{-1} réciproque de f est dérivable sur $\left|\frac{1}{\pi}\right|$, $\frac{2}{\pi}$.
 - c) Etudier la dérivabilité de f^{-1} en $\frac{1}{\pi}$ et $\frac{2}{\pi}$
 - d) Calculer $f^{-1}\left(\frac{3}{2\pi}\right)$ et $(f^{-1})'\left(\frac{3}{2\pi}\right)$
- 3) Soit la fonction g définie sur [0,1] par g(x) = f(x) x
 - a) Montrer que $\forall x \in]0$, 1[on a : 0 < f'(x) < 1
 - b) Montrer que l'équation g(x) = 0 admet dans [0, 1] une unique solution α
 - c) En déduire le signe de g(x) sur [0,1].
- 4) Soit la suite réelle (U_n) définie par : $\begin{cases} U_0 = \frac{1}{2}\alpha \\ \forall n \in \mathbb{N} \; ; \; U_{n+1} = f(U_n) \end{cases}$
 - a) Montrer que $\forall n \in \mathbb{N}$ on a : $0 \le U_n \le \alpha$ b) Montrer que la suite (U_n) est croissante.
 - c) En déduire que la suite (U_n) est convergente et déterminer sa limite.