Exercice 1

Déterminer une primitive pour chacune des fonctions suivantes sur un intervalle bien choisie

$$f(x) = 5x^4 + 3x^2 - 3$$
; $f(x) = \frac{2}{x^3} - \sqrt{x} + \frac{3}{\sqrt{x}}$; $f(x) = 2\cos x - 3\sin x$; $f(x) = \frac{x^4 - 2x^2 + 3}{x^2}$

$$f(x) = -2\cos(2x-1) + 3\sin(4x+3); f(x) = \frac{-2x-1}{\sqrt{x^2+x}}; f(x)(-2x+1)(x^2-x-2)^3$$

$$f(x) = \frac{1}{\tan^2 x} + 1$$
; $f(x) = \cos^2 x$; $f(x) = \sin^2 x$: $f(x) = \tan^3 x + \tan x$

$$f(x) = \frac{2x\cos x + x^2\sin x}{\cos^2 x}; \ f(x) = \frac{\cos x}{1 - \cos^2 x} \ ; \ f(x) = \cos^3 x \sin x; f(x) = -\frac{1}{x^2} + \frac{2}{x^3}$$

Exercice 2

Soit f la fonction définie sur $\mathbb{R}\setminus\{1\}$ par $f(x)=\frac{x^3-x^2-x+5}{(x-1)^2}$

- 1) Déterminer trois réels , b et c tels que pour tout $x \in \mathbb{R} \setminus \{1\}$; $f(x) = ax + b + \frac{c}{(x-1)^2}$
- 2) Déterminer une primitive de f sur]1, $+\infty$ [

Exercice 3

Soit f la fonction définie sur $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\text{ par } : f(x) = \tan^2 x + 3x - 1 \right]$

- 1) Montrer que f admet au moins une primitive F sur $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$
- 2) Déterminer la fonction F qui prend la valeur 1 en 0.

Exercice 4

Soit f la fonction définie sur]0, $+\infty$ [par $f(x) = \frac{3x^4 - 2x^2 + 4}{x^2}$

- 1) Montrer que f admet au moins une primitive F sur]0, $+\infty[$
- 2) Déterminer la fonction F tel que F(1) = 0

Exercice 5

Soit les fonctions f et g définies sur \mathbb{R} par : $f(x) = x \cos x$ et $g(x) = x \sin x$

- 1) Calculer f'(x) + g(x), en déduire une primitive G de g sur $\mathbb R$
- 2) Déterminer une primitive F de f sur \mathbb{R}

Exercice 6

Soit les fonctions f et g définies sur \mathbb{R} par $f(x) = \cos x \cos(3x)$ et $g(x) = \sin x \sin(3x)$

1), a) Déterminer une primitive de chacune des fonctions f+g et f-g

- b) En déduire les primitives sur $\mathbb R$ des fonctions f et g
- 2) Soit la fonction h définie sur \mathbb{R} par : $h(x) = (1 + \cos x) \sin(4x)$ $h(x) = (1 + \cos x) \sin 4x$.

Déterminer la primitive H de h qui s'annule en π

Exercice 7

Soit f la fonction définie sur $[0, +\infty[$ par $f(x) = \frac{1}{1+x^2}$

- 1) Montrer f admet une unique primitive F sur $[0, +\infty[$ tel que F(0) = 0
- 2) Soit G la fonction définie sur $\left[0, \frac{\pi}{2}\right]$ par : $G(x) = F(\tan x)$
 - a) Montrer que G est dérivable sur $\left[0, \frac{\pi}{2}\right]$ et déterminer G'(x)
 - b) En déduire que pour tout $x \in \left[0, \frac{\pi}{2}\right]$ on a G(x) = x
 - c) En déduire que la fonction $u(x) = \tan x$ est la fonction réciproque de F
 - d) Calculer: F(0); $F(\sqrt{3})$ et $F(\frac{1}{\sqrt{3}})$

Exercice 8

Soit f la fonction définie sur]-1 , $1[\ ^{I}$ = par $: f(x) = \frac{1}{\sqrt{1-x^2}}$

- 1) Montrer f admet une unique primitive F sur]-1, 1[tel que F(0)=0
- 2) On pose pour tout $x \in]-1$, 1[h(x) = F(-x) + F(x)
 - a) Montrer que pour tout $x \in]-1$, 1[; h'(x) = 0
 - **b)** En déduire h(x)
 - ${f c})$ Montrer alors que la fonction ${f F}$ est impaire
- 3) Soit G la fonction définie sur $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\text{par} : G(x) = F(\sin x)$
 - a) Montrer que G est dérivable sur $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$ et déterminer G'(x)
 - b) En déduire que pour tout $x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$ on a G(x) = x
 - c) Calculer: $F\left(\frac{1}{2}\right)$; $F\left(\frac{\sqrt{2}}{2}\right)$ et $F\left(\frac{\sqrt{3}}{2}\right)$