Fonctions réciproques 4ème Sc Techniques

Dans tous les exercices le plan est rapporté à un repère orthonormé $(0, \vec{t}, \vec{j})$.

Exercice 1

Soit f la fonction définie sur $[0, +\infty[$ par $: f(x) = \frac{4-x^2}{x^2+1}$ et soit C_f sa courbe représentative.

- 1) Montrer que f est dérivable sur $[0, +\infty[$ et que $\forall x \in [0, +\infty[$; $f'(x) = \frac{-10x}{(x^2+1)^2}$
- 2) Dresser le tableau de variation de f sur $[0, +\infty[$ et préciser le nombre dérivé de f à droite en 0.
- 3) Montrer que f réalise une bijection de $[0, +\infty[$ sur]-1, 4].
- 4) Soit f^{-1} la réciproque de f.
 - a) Donner le tableau de variation de f^{-1}
 - **b)** Calculer $f^{-1}(0)$ et $(f^{-1})'(0)$.
 - c) Montrer que f^{-1} est dérivable sur]-1, 4[on précisera la dérivabilité de f^{-1} à gauche en 4
 - d) Expliciter $f^{-1}(x)$ pour tout $x \in]-1, 4]$.

Exercice 2

Soit f la fonction définie sur \mathbb{R} par : $f(x) = 3 - \sqrt{x^2 + 1}$ et soit C_f sa courbe représentative.

- 1) Dresser le tableau de variations de f.
- 2) Soit g la fonction définie sur \mathbb{R} par : g(x) = f(x) x.
 - a) Montrer que l'équation g(x) = 0 admet dans \mathbb{R} une unique solution α .
 - b) En déduire que l'équation f(x) = x admet dans $\mathbb R$ une unique solution α et que $1 < \alpha < 1, 5$.
 - 3) Soit h la restriction de f à l'intervalle $[0, +\infty]$.
 - a) Montrer que h réalise une bijection de \mathbb{R}_+ sur $]-\infty$, 2] .
- c) Montrer que la fonction h^{-1} réciproque de h est continue sur $]-\infty$, 2] et préciser son sens de variation sur $]-\infty$, 2].
- 4) a) Montrer que h^{-1} est dérivable sur l'intervalle $]-\infty$, 2[.
 - b) Montrer que h^{-1} n'est pas dérivable en 2.
 - c) Calculer $h^{-1}(x)$ en fonction de x pour tout $x \in]-\infty$, 2[.

Exercice 3

- 1) Soit la fonction f définie sur]0, $+\infty[$ par $f(x) = \sqrt{\frac{x+1}{x}}$
 - a) Calculer $\lim_{x\to 0^+} f(x)$ et $\lim_{x\to +\infty} f(x)$. Interpréter les résultats graphiquement.
 - b) Montrer que f est dérivable sur]0, $+\infty[$ et que $\forall x \in]0$, $+\infty[$ on a $f'(x) = \frac{-1}{2x^2\sqrt{\frac{x+1}{x}}}$
 - Montrer que f réalise une bijection de]0, $+\infty[$ sur un intervalle J que l'on précisera.
 - **d)** Expliciter $f^{-1}(x)$ pour tout $x \in J$.
- 2) Soit la fonction g définie sur]0 , $+\infty[$ par g(x)=f(x)-x
 - a) Dresser le tableau de variation de g.

- b) Montrer que l'équation f(x) = x admet une unique solution α dans]0, $+\infty[$ et que $1 < \alpha < 2$.
- 3) a) Montrer que $\forall x \in [1, +\infty[$ on a $|f'(x)| \leq \frac{1}{2}$.
 - **b)** En déduire que $\forall x \in [1, +\infty[$ on a : $|f(x) \alpha| \le \frac{1}{2}|x \alpha|$

Exercice 4

Soit f la fonction définie sur $[0,+\infty[$ par $:f(x)=x^2-1+\sqrt{x^2+x}$ et soit C_f sa courbe représentative.

- 1) Montrer que f est continue sur $[0, +\infty[$
- 2) a) Etudier la dérivabilité de f à droite en 0 et interpréter géométriquement le résultat obtenu
 - b) Montrer que f est dérivable sur]0, $+\infty[$ et calculer f'(x).
 - c) En déduire que $\forall x \in]0$, $+\infty[; f'(x) > 0$.
- 3) a) Dresser le tableau de variation de f
 - **b)** Montrer que f est une bijection de $[0, +\infty[$ sur $[-1, +\infty[$.
- 4) Montrer que l'équation f(x) = 0 admet dans $[0, +\infty[$ une unique solution α et que $\alpha \in]0$, 1[
- 5) Soit f^{-1} la réciproque de f.
 - a) Donner le sens de variation de f^{-1}
 - b) Montrer que f^{-1} est continue et dérivable sur $[-1,+\infty[$

Exercice 5

Le graphique ci-contre est celui d'une fonction f définie, continue et dérivable sur [-2,4].

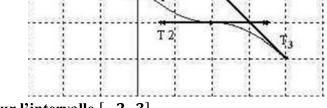
 T_1 est la demi-tangente au point d'abscisse 1.

 T_2 est la tangente au point de coordonnées (2, -1).

 T_3 est la tangente au point de coordonnées (4, -2).

1) Répondre par VRAI ou FAUX en justifiant

a)
$$f'_{d}(-2) = -2$$
; $f'_{g}(4) = 2$; $f'(2) = 0$



- b) La fonction f réalise une bijection de [-2, 4] sur l'intervalle [-2, 3].
- 2) Justifier que la fonction réciproque f^{-1} de f n'est pas dérivable au point -1.
- 3) Calculer $(f^{-1})'_{d}(3)$ et $(f^{-1})'_{g}(-2)$.
- 4) Tracer la courbe C' de la fonction f^{-1} .

Exercice 6

Soit f la fonction définie sur par : $f(x) = -x + \frac{2}{\sqrt{x+1}}$ et soit C_f sa courbe représentative.

- 1) Déterminer le domaine de définition de f.
- 2) a) Calculer $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to -1^+} f(x)$
 - b) Dresser le tableau de variation de f
- 3) a) Donner une équation cartésienne de la tangente T à la courbe \mathcal{C}_f au point d'abscisse 0.

- 4) Montrer que l'équation f(x) = x admet dans]-1, $+\infty[$ une unique solution α et que $1 < \alpha < 1,5$
- 5) a) Montrer que f réalise une bijection de]-1, $+\infty[$ sur un intervalle J que l'on déterminera.
 - b) Montrer que f^{-1} est dérivable sur I
 - c) Calculer en fonction de α ; $(f^{-1})'(\alpha)$.

Exercice 7

Soit la fonction f définie sur \mathbb{R} par $\begin{cases} f(x) = \frac{-x}{2x+1} & \text{si } x \ge 0 \\ f(x) = -x + \sqrt{x^2 - x} & \text{si } x < 0 \end{cases}$

- 1) a) Etudier la continuité de f en 0.
 - b) Etudier la dérivabilité de f en 0. Interpréter le résultat graphiquement.
- 2) Calculer $\lim_{x \to -\infty} f(x)$ et $\lim_{x \to +\infty} f(x)$. Interpréter le résultat graphiquement.
- 3) a) Montrer que $\forall x > 0$ on a : $f'(x) = \frac{-1}{(2x+1)^2}$
 - b) Montrer que $\forall x < 0$ on a : $f'(x) = -1 + \frac{2x-1}{2\sqrt{x^2-x}}$
 - c) Dresser le tableau de variation de f.
- 4) Soit g la restriction de f à l'intervalle $]-\infty$, 0].
 - a) Montrer que g admet une fonction réciproque g^{-1} définie sur un intervalle I que l'on déterminera.
 - **b)** Expliciter $g^{-1}(x)$ pour tout $x \in I$.

Exercice 8

Pour chaque question indiquer la réponse exacte.

1) Soit $f(x) = \sqrt{\frac{x}{x-2}}$ la bijection de]2, $+\infty$ [sur]1, $+\infty$ [
a) $(f^{-1})(y) = \frac{-2y^2}{1-y^2}$ b) $(f^{-1})(y) = \frac{2y^2}{1-y^2}$

a)
$$(f^{-1})(y) = \frac{-2y^2}{1-y^2}$$

b)
$$(f^{-1})(y) = \frac{2y^2}{1-y^2}$$

c)
$$(f^{-1})(y) = \frac{-2y^2}{y^2-1}$$

2) La courbe (C) ci-dessous représente une fonction f définie sur $\mathbb R$

a)
$$(f^{-1})'(2) = -2$$

b)
$$(f^{-1})'(2) = -\frac{1}{2}$$

c) $(f^{-1})'(2) = 2$

c)
$$(f^{-1})'(2) = 2$$

Exercice 9

Soit la fonction f définie sur]0, 1] par $f(x) = \frac{2+\sqrt{1-x^2}}{x}$ et soit C_f sa courbe représentative.

- 1) Etudier la dérivabilité de f à gauche en 1 et interpréter le résultat graphiquement.
- 2) Montrer que f est dérivable sur]0, 1 et déterminer f'(x) pour tout $x \in]0$, 1.
- 3) Dresser le tableau de variation de f.
- 4) a) Montrer que f admet une fonction réciproque f^{-1} définie sur un intervalle J que l'on déterminera.
 - b) Montrer que f^{-1} est dérivable sur]0 , 2]
 - c) Expliciter $f^{-1}(x)$ pour tout $x \in I$.

(C)

Exercice 10

Soit f la fonction définie sur $\left[0, \frac{\pi}{2}\right]$ par : $f(x) = \frac{1}{\cos x}$

- 1) a) Montrer que f réalise une bijection de $\left[0, \frac{\pi}{2}\right]$ sur $\left[1, +\infty\right[$
 - b) En déduire que f admet une fonction réciproque f^{-1}
 - c) Calculer $f^{-1}(2)$ et $f^{-1}(\sqrt{2})$.
- 3) a) Montrer que f^{-1} est dérivable sur $]1, +\infty[$
 - **b)** Calculer $(f^{-1})'(2)$ et $(f^{-1})'(\sqrt{2})$.
- 4) Montrer que pour tout $x \in]1$, $+\infty[$ on a $(f^{-1})'(x) = \frac{1}{x\sqrt{x^2-1}}$

Exercice 11

Soit f la fonction définie sur \mathbb{R} par $f(x) = x - \sqrt{x^2 + 1} + 2$ et soit C_f sa courbe représentative.

- 1) a) Calculer $\lim_{x \to +\infty} f(x)$ et interpréter le résultat graphiquement
 - b) Montrer que la droite Δ : y=2x+2 est une asymptote à C_f au voisinage de $-\infty$
 - c) Etudier la position relative de C_f et Δ :
- 2) a) Montrer que pour tout $x \in \mathbb{R}$ on a : $f'(x) = \frac{\sqrt{x^2+1}-x}{\sqrt{x^2+1}}$
 - b) Dresser le tableau de variation de f
 - c) Montrer que l'équation f(x)=0 admet dans $\mathbb R$ une unique solution α et que $-1<\alpha<0$
 - **d)** Tracer C_f et Δ :
- 3) Montrer que f admet une fonction réciproque f^{-1} dont on déterminera le domaine de définition
 - a) Dresser le tableau de variation de f^{-1}
 - **b)** Expliciter $f^{-1}(x)$ pour tout $x \in]-\infty$, 2[
 - c) Tracer $C_{f^{-1}}$ courbe représentative de f^{-1}

Exercice 12

- A) Soit la fonction f définie sur $[1, +\infty[$ par $: f(x) = \frac{\sqrt{x^2-1}}{x} + 1$. On désigne par C_f .
- 1) Montrer que $\lim_{x \to +\infty} f(x) = 2$ et interpréter le résultat graphiquement.
- 2) a) Etudier la dérivabilité f est à droite en 1. Interpréter le résultat graphiquement.
 - b) Justifier que f est dérivable sur]1, $+\infty[$ et que pour tout $\in]1$, $+\infty[$, $f'(x)=\frac{1}{x^2\sqrt{x^2-1}}$.
 - c) Dresser le tableau de variation de f.
- 3) a) Montrer que f réalise une bijection de $[1, +\infty[$ sur [1, 2].
- b) Montrer que f^{-1} est dérivable à droite en 1.
- 4) Expliciter $f^{-1}(x)$ pour tout $\in [1, 2]$.

- B) Soit la fonction g définie sur $\left[0, \frac{\pi}{2}\right]$ par : $\begin{cases} g(x) = \frac{1}{f\left(\frac{1}{\cos x}\right)} & \text{si } x \in \left[0, \frac{\pi}{2}\right] \\ g\left(\frac{\pi}{2}\right) = \frac{1}{2} \end{cases}$
- 1) Montrer que pour tout $\in \left[0, \frac{\pi}{2}\right], g(x) = \frac{1}{1+\sin x}$
- 2) Montrer que g admet une fonction réciproque g^{-1} définie sur $\left[\frac{1}{2},1\right]$
- 3) Montrer que g^{-1} est dérivable sur $\left[\frac{1}{2}, 1\right]$ et que $(g^{-1})'(x) = \frac{1}{x\sqrt{2x-1}}$.

