Fonction de références 2ème Sciences

Dans tous les exercices le plan est rapporté à un repère orthonormé $(0, \vec{1}, \vec{j})$.

Exercice 1

Soit la fonction f définie sur IR par $f(x) = -2x^2 + 2$ et soit C_f sa courbe représentative

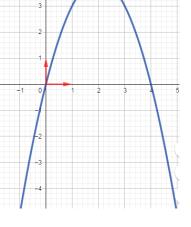
- 1) Construire C_f
- 2) Résoudre graphiquement puis par le calcul f(x) = 0 puis f(x) > -6
- 3) Soit la fonction g définie sur IR par g(x) = |f(x)| et soit C_g sa courbe représentative
 - a) Tracer C_g à partir de C_f (Justifier)
 - b) Déduire le tableau de variation de g
- 4) Déterminer graphiquement le nombre de solutions de l'équation g(x) = m où m est un paramètre réel

Exercice 2

Soit la fonction f définie sur IR par $x \mapsto x(x-1)$ et soit C_f sa courbe représentative

- 1) a) Déterminer le domaine de définition de f
 - **b)** Montrer que $\forall x \in IR$ on a $f(x) \leq 4$
 - c) En déduire que la fonction f admet un maximum en $x = \frac{1}{2}$
- 2) a) Montrer que $\forall x \in IR$ on a $f(x) = \frac{1}{4} \left(x \frac{1}{2}\right)^2$
 - **b)** Montrer que la fonction f est croissante sur $]-\infty$, $\frac{1}{2}$ et décroissante sur $]\frac{1}{2}$, $+\infty$

Exercice 3


On a représenté ci-contre la parabole P de la fonction définie sur IR par $f(x) = ax^2 + bx$ où a et b deux réels

- 1) a) Préciser, graphiquement, le sommet et l'axe de P
 - **b)** Déterminer a et b
- 2) Dans la suite on suppose que $\forall x \in IR \ f(x) = -x^2 + 4x$
 - a) Soit g la fonction définie sur IR par

 $g(x) = |-x^2 + 4x|$ et soit C_g sa courbe représentative

Tracer C_g à partir de P et C_h

b) Déterminer graphiquement le nombre de solutions

de l'équation g(x) = m où m est paramètre réel

3) Soit la fonction h définie sur IR par

 $h(x) = x^2 + 2$ et soit C_h sa courbe représentative

- a) Préciser le sommet et l'axe de C_h
- b) Montrer que P et C_h ont un seul point d'intersection A dont on précisera les coordonnées
- c) Tracer C_h

Exercice 4

Soit la fonction f définie sur IR par $f(x) = x^2 + x - 2$ et soit C_f sa courbe représentative

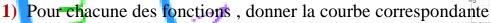
- 1) Déterminer le sommet et l'axe de C_f
- 2) a) Tracer la parabole P d'équation y = x
 - b) Tracer la courbe C_f à partir de P
 - c) Soit la droite Δ dont une équation est $x + 2y + 2 \neq 0$
 - d) Résoudre graphiquement l'inéquation $f(x) < \frac{x}{2} 1$
- 3) Soit la fonction g définie sur IR par $g(x) = x^2 + |x| 2$ et soit C_g sa courbe représentative
 - a) Montrer que la fonction g est paire
 - **b)** Montrer que pour tout réel x négatif on a:g(x)=f(x)
 - c) Tracer alors \mathcal{C}_g

Exercice 5

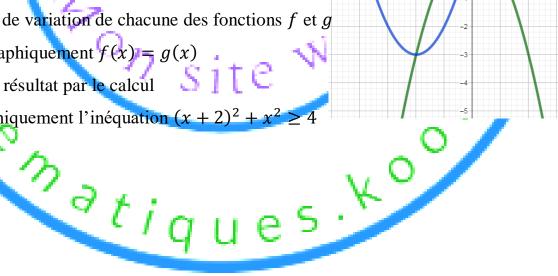
Soit la fonction f définie sur $IR\setminus\{-1\}$ par $f(x)=\frac{1}{x+1}$ et soit C_f sa courbe représentative

- 1) a) Etudier la fonction f
 - **b**) Tracer C_f
- 2) Soit la fonction g définie sur $IR \setminus \{-1\}$ par $g(x) = \frac{3x+2}{x+1}$ et soit C_g sa courbe représentative
 - a) Montrer que $\forall x \in IR \setminus \{-1\}$ on a g(x) = 3 + f(x)
 - **b)** Tracer C_g à partir de C_f (Justifier)
 - c) Déduire le tableau de variation de g
- 3) Soit la fonction h définie sur IR par $h(x) = -\frac{1}{|x|+1}$
 - a) Etudier la parité de h puis tracer C_h à partir de C_f (Justifier)

Exercice 6


Soit la fonction f définie sur IR par $f(x) = \frac{1}{x+2}$ et soit C_f sa courbe représentative

- 1) a) Déterminer le domaine de définition de f
 - **b)** Montrer que la fonction f est décroissante sur $]-\infty$, -2[puis sur]-2 , $+\infty[$
 - c) Tracer C_f
- 2) Soit la fonction g définie sur IR\{-2} par g(x) = $\frac{-x-1}{x+2}$
 - a) Tracer C_g à partir de C_f (Justifier)
 - b) Déduire le tableau de variation de g
- 3) Soit la fonction h définie par $h(x) = \frac{-|x|-1}{|x|+2}$
 - a) Déterminer le domaine de définition de h
 - b) Montrer que h est une fonction paire
 - c) Tracer C_h à partir de C_f (Justifier)
 - b) Déduire le tableau de variation de h


Exercice 7

Soient les fonctions $f(x) = -x^2 + 1$ et $g(x) = (x+2)^2 - 3$

On a représenté ci-contre deux courbes C_1 et C_2

- 2) Donner le sens de variation de chacune des fonctions f et g
- 3) a) Résoudre graphiquement f(x) = g(x)
 - b) Retrouver le résultat par le calcul
- 4) Résoudre graphiquement l'inéquation $(x + 2)^2 + x^2$

