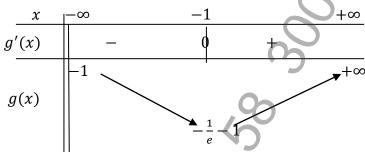
Dans tous les exercices le plan est rapporté à un repère orthonormé $(0, \vec{i}, \vec{j})$

Exercice 1

Soit la fonction g définie sur IR par $g(x) = xe^x - 1$.

Le tableau ci-dessous est le tableau de variations de g.



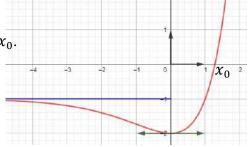
- 1) On admet que l'équation $g(x) \stackrel{1}{=} 0$ admet une unique solution a strictement positive. En déduire le signe de g(x) suivant x.
- 2) Soit f la fonction définie sur]0, $+\infty$ [par : $f(x) = e^x \ln x$.
 - a) Etudier la limite de f à droite en 0. Interpréter le résultat graphiquement.
 - b) Vérifier que pour tout x de]0, $+\infty[;f'(x)] = \frac{g(x)}{x}$.
 - c) Etudier les variations de f puis dresser le tableau de variations de f en admettant que $\lim_{x \to +\infty} f(x) = +\infty$
- 3) Tracer C la courbe représentative de f. On suppose que a=0.75 (unité graph 4 cm).
- 4) Soit D l'ensemble des points M(x, y) tels que $1 \le x \le 2$ et $0 \le y \le f(x)$.
 - a) Hachurer le domaine D.
 - b) Calculer l'aire du domaine D

Exercice 2

1) La courbe (Γ) ci-dessous est celle d'une fonction g définie, continue et dérivable sur \mathbb{R} .

On sait que:

- * La droite d'équation y = -1 est une asymptote à (Γ) au voisinage de $-\infty$.
- * La courbe (Γ) admet une seule tangente horizontale.
- * La courbe (Γ) coupe l'axe des abscisses (0, $\vec{\iota}$) en un unique point x_0 .



En utilisant le graphique :

- a) Déterminer g(0) et g'(0).
- b) Déterminer le signe de g sur \mathbb{R} .
- 2) La fonction g est définie sur \mathbb{R} par : $g(x) = (\alpha x + \beta)e^x 1$ où α et β sont deux réels.
 - a) Exprimer g(0) et g'(0) en fonction de α et β .
 - b) Déduire, en utilisant 1)a), que pour tout réel x on a : $g(x) = (x 1)e^x 1$.

Dans la suite de l'exercice, on considère la fonction f définie sur \mathbb{R}^* par $f(x) = \frac{e^x + 1}{x}$

On désigne par (C_f) sa courbe représentative.

- 3) a) Calculer $\lim_{x\to -\infty} f(x)$, $\lim_{x\to 0^+} f(x)$ et $\lim_{x\to 0^+} f(x)$. Interpréter graphiquement le résultat .
 - b) Calculer $\lim_{x \to +\infty} f(x)$.
 - c) Justifier que la courbe (C_f) admet une branche parabolique de direction (O, \vec{j}) au voisinage de $+\infty$
- 4) a) Vérifier que pour tout $x \in \mathbb{R}^*$ on a : $f'(x) = \frac{g(x)}{x^2}$
 - b) Dresser le tableau de variation de f.
 - c) Montrer que $f(x_0) = \frac{1}{x_0 1}$.
 - d) Tracer (C_f) . (On prendra $x_0 = 1.2$).

Soit la fonction f définie sur IR par : $f(x) = (1+x)e^{-x}$.

On désigne par (C_f) la courbe représentative de f.

- 1) a) Calculer $\lim_{x \to -\infty} f(x)$ et $\lim_{x \to +\infty} f(x)$
 - b) Montrer que pour tout réel , $f(x)' = -xe^{-x}$
 - c) Dresser le tableau de variation de f
- 2) a) Calculer $\lim_{x \to -\infty} \frac{f(x)}{x}$. Interpréter graphiquement le résultat obtenu.
 - b) Tracer la courbe (C_f)
- 3) Soit $n \in \mathbb{N}^*$. On désigne par A_n l'aire de la partie du plan limité par la courbe (C_f) les axes du repère et la droite d'équation x = n
 - a) A l'aide d'une intégration par parties, calculer A_n en fonction de n.
 - b) Calculer $\lim_{n\to+\infty} A_n$

<u>Exercice 4</u>

Soit la fonction f définie sur IR par : $f(x) = \frac{1}{2} \ln(1 + e^{-x})$. On désigne par (ζ) sa courbe représentative.

- 1) a) Montrer que f est dérivable sur IR et que pour tout $x \in IR$, $f'(x) = -\frac{1}{2} \frac{1}{1 + e^x}$.
 - b) Etudier les variations de f.
 - c) Vérifier que pour tout $x \in IR$, $f(x) = -\frac{1}{2}x + \frac{1}{2}\ln(1 + e^x)$.
 - d) En déduire que la droite Δ : $y = -\frac{1}{2}x$ est une asymptote à (ζ) en $-\infty$.

Etudier la position relative de (ζ) et Δ .

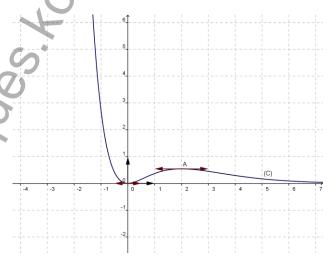
- e) Tracer (ζ) et Δ .
- 2) a) Montrer que l'équation f(x) = x admet dans IR une solution unique α .
 - b) Vérifier que $0 < \alpha < 1$.

- 3) a) Montrer que pour tout $x \ge 0$, $|f'(x)| \le \frac{1}{4}$.
 - b) En déduire que tout $x \ge 0$, $|f(x) \alpha| \le \frac{1}{4} |x \alpha|$.
- 4) Soit la suite définie sur IN par $\begin{cases} U_0 = 0 \\ U_{n+1} = f(U_n) \end{cases}$
 - a) Montrer que pour tout $n \in IN$, $U_n \ge 0$.
 - b) Montrer que pour tout $n \in IN$, $\left|U_{_{n+1}} \alpha\right| \leq \frac{1}{4} \left|U_{_{n}} \alpha\right|$.
 - c) En déduire que pour tout $n \in IN$, $\left| U_n \alpha \right| \le \left(\frac{1}{4} \right)^n$ et calculer $\lim_{n \to +\infty} U_n$.

I) On a représenté ci-dessous la courbe représentative (C) d'une fonction f définie, continue et dérivable sur IR.

On sait que la courbe (C) admet :

- Une asymptote d'équation y = 0 au voisinage de $+\infty$ et une branche parabolique de direction (O, j) au voisinage de $-\infty$.
- Seulement deux tangentes horizontales ; l'une au point O et l'autre au point $A(2,4e^{-2})$.



En utilisant le graphique :

- 1) Déterminer $\lim_{x \to +\infty} f(x)$, $\lim_{x \to -\infty} f(x)$ et $\lim_{x \to -\infty} \frac{f(x)}{x}$.
- 2) Déterminer, suivant la valeur du paramètre réel m, le nombre de solutions de l'équation f(x) = m.
- II) On suppose que la fonction f et définie par : $f(x) = x^2 e^{-x}$. On note f' la fonction dérivée de f.
- 1) Vérifier que, pour tout réel x, $f'(x) = 2xe^{-x} f(x)$.
- 2) Soit $I = \int_0^2 x e^{-x} dx$ et $J = \int_0^2 f(x) dx$.
 - a) Montrer, à l'aide d'une intégration par parties, que $I = 1 3e^{-2}$.
 - b) En utilisant II-1), montrer que $J = 2I \int_0^2 f'(x)dx$.

c) En déduire la valeur de J et interpréter graphiquement le résultat

<u>Exercice 6</u>

On a représente ci-dessous dans un repère orthonormé la courbe (C) d'une fonction f définie, continue, dérivable et strictement décroissante sur $[0,+\infty[$.

On sait que la courbe (C):

- * admet l'axe des abscisses comme asymptote au voisinage de $+\infty$
- * atteint son maximum au point d'abscisse 0.
- 1) Par lecture graphique:
 - a) Déterminer $f(0) \lim_{x \to +\infty} f(x)$ et $f'_d(0)$ (nombre dérivé à droite en 0)
 - b) Montrer que f est une bijection de $\begin{bmatrix} 0 \\ \end{bmatrix}$, $+\infty \begin{bmatrix} \end{bmatrix}$ sur un intervalle J que l'on déterminera.
- 2) Tracer la courbe (C') de la fonction f^{-1} réciproque de f.

On note β l'abscisse du oint d'intersection des deux courbes (C) et (C')

- 3) On sait que la fonction f est définie sur $[0, +\infty[$ par $f(x) = (ax+b)e^{-2x}$.où a et b sont deux réels.
 - a) En utilisant 1) a) montrer que pour tout x de $\left[0 , +\infty\right[; f(x) = (2x+1)e^{-2x}$.
 - b) Soit $I = \int_0^{\beta} (2x+1)e^{-2x} dx$.

A l'aide d'une intégration par parties, montrer que $I = 1 - (\beta + 1)e^{-2\beta}$.

c) On désigne par A l'aire de la partie (E) du plan limité par la courbe (C'), l'axe des abscisses et les droites

d'équations $x = \beta$ et x = 1.

Hachurer (E) et déterminer A en fonction de β



Exercice 7

Soit f la fonction définie sur]0, 1[par : $f(x) = \ln\left(\frac{x}{1-x}\right)$.

- 1) a) Dresser le tableau de variation de f.
 - b) Montrer que f admet une fonction réciproque définie sur \mathbb{R} par $g(x) = \frac{e^x}{1+e^x}$
- 2) On désigne par (C) la courbe de g (Unité graphique 4cm).

- a) Montrer que (C) est symétrique par rapport au point $I\left(0,\frac{1}{2}\right)$.
- b) Calculer g'(x) pour tout $x \in \mathbb{R}$ et dresser le tableau de variation de g.
- c) Vérifier que $I \in (C)$ et montrer que la tangente T à (C) en I a pour équation : $y = \frac{1}{4}x + \frac{1}{2}$
- d) Montrer que pour tout $x \in \mathbb{R}$ on $a : g'(x) \le \frac{1}{4}$.
- 3) Soit *h* la fonction définie sur \mathbb{R} par : $h(x) = g(x) \frac{1}{4}x \frac{1}{2}$
 - a) Etudier le sens de variation de h.
 - b) Calculer h(0) et en déduire le signe de h(x) sur \mathbb{R} .
- 4) Etudier la position de (C) et T.
- 5) a) Montrer que l'équation f(x) = x admet une unique solution α et que $0.5 < \alpha < 0.75$.
 - b) Tracer (C) et T et la courbe (C') de f.
- 6) Soit G la primitive de g tel que $G(0) = \ln 2$ et $F: x \mapsto \ln(g(x))$.
 - a) Montrer que pour tout $x \in \mathbb{R}$ on a : F(x) = x G(x).
 - b) Dresser le tableau de variation de F.
 - c) Montrer que la droite D: y = x est asymptote à la courbe Γ de F au voisinage de $-\infty$.
 - d) Préciser la position de Γ par rapport à D. Tracer Γ .

Soit f la fonction définie sur IR par $f(x) = 1 + e^x - xe^x$. On note (ζ) sa courbe représentative.

1) On donne ci- dessous le tableau de variation de f.

CX	- ∞	0		$+\infty$
f'(x)	-	0	+	
f(x)	1/	2		√ -∞

- a) Justifier que la restriction g de f à l'intervalle $[0, +\infty[$ réalise une bijection de $[0, +\infty[$ sur $]-\infty, 2]$.
- b) Montrer que l'équation f(x) = 0 admet dans IR, une solution unique α .
- c) Vérifier que $1 < \alpha < 1,5$
- 2) a) Calculer $\lim_{x \to -\infty} \frac{f(x)}{x}$. Interpréter graphiquement le résultat .
 - b) Etudier la position relative de la courbe (ζ) et la droite Δ d'équation y=x.
 - c) Tracer (ζ) et Δ .
- 3) On note g^{-1} la fonction réciproque de g et (ζ') sa courbe représentative. Tracer (ζ') .
- 4) a) Vérifier que la fonction F définie par $F(x) = x + (2 x)e^x$ est une primitive de f sur IR.

b) Calculer l'aire A de la partie du plan limitée par la courbe (ζ), la droite Δ et les droites d'équations

$$x = 0$$
 et $x = 1$.

c) En déduire que $\int_1^2 g^{-1}(x)dx = e - 2$.

Exercice 9

Soit la fonction f définie sur $\left[0, +\infty\right[$ par $f(x) = \ln\left(\frac{x+1}{x}\right)$. On désigne par (C) sa courbe représentative.

- 1) Calculer $\lim_{x\to 0^+} f(x)$ et $\lim_{x\to +\infty} f(x)$. Interpréter graphiquement les résultats.
- 2) a) Montrer que pour tout x de $]0, +\infty[$, $f'(x) = \frac{-1}{x(x+1)}$.
 - b) Dresser le tableau de variation de f.
- 3) Tracer (C).
- 4) Soit n un entier naturel non nul.
 - a) Montrer que l'équation $f(x) = \frac{1}{n}$ admet une solution unique x_n dans $[0, +\infty[$.
 - b) Vérifier que $x_n = \frac{1}{e^{\frac{1}{n}} 1}$.
 - c) Calculer $\lim_{n\to+\infty} \frac{X_n}{n}$.

Exercice 10

Dans le graphique ci-contre

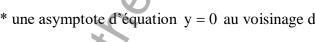
 ζ et Γ sont les courbes représentatives,

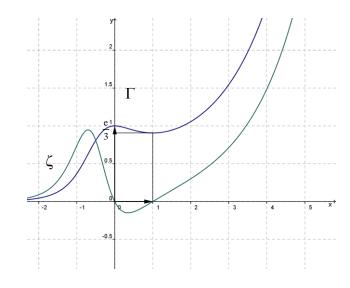
dans un repère orthogonal (O, i, j), d'une fonction

f dérivable sur IR et de sa fonction dérivée f'.

Chacune des deux courbes ζ et Γ possède :

- * une branche parabolique de direction l'axe des ordonnées au voisinage de $+\infty$.
- * une asymptote d'équation y = 0 au voisinage de $-\infty$





- 1) Par une lecture graphique:
 - a) Déterminer, parmi les courbes ζ et Γ celle qui représente la fonction f'.
 - b) Déterminer f(0), f'(0) et f'(1).
 - c) Dresser le tableau de variation de f.
- 2) On admet que la fonction f est définie sur par : $f(x) = \frac{e^x}{1 + x + x^2}$.
 - a) Calculer f'(x), pour $x \in IR$.

- b) Montrer que pour tout $x \in IR$ on a : $f(x) f'(x) = f(x) \frac{2x+1}{1+x+x^2}$.
- c) En déduire les coordonnées du point d'intersection des deux courbes $\,\zeta\,$ et $\,\Gamma\,$.
- d) Montrer que pour tout $x \ge -\frac{1}{2}$ on a : $f(x) f'(x) \ge \frac{4}{3\sqrt{e}} \frac{2x+1}{1+x+x^2}$.
- 3) Soit t un réel supérieur ou égale à 1. On désigne par A(t) l'aire de la partie du plan limité par les deux courbes ζ et Γ et les droites : $x=-\frac{1}{2}$ et x=t
 - a) Montrer que $A(t) \ge \frac{4}{3\sqrt{e}} \ln(1 + t + t^2) \frac{4}{3\sqrt{e}} \ln(\frac{3}{4}).$
 - b) En déduire $\lim_{t\to +\infty} A(t)$.

On considère la fonction f définie sur IR $-\{-1\}$ par $f(x) = -1 + \frac{x-1}{x+1}e^x$. On désigne par ζ la courbe représentative de f dans un repère orthonormé $(0, \vec{i}, j)$.

- $1) \ \ Calculer \ \ \lim_{x \to (-1)^-} f(x) \ , \ \ \lim_{x \to (-1)^+} f(x) \ , \ \ \lim_{x \to -\infty} f(x) \ , \ \ \lim_{x \to +\infty} f(x) \ .$
- 2) a) Montrer que pour $x \in IR \{-1\}$, $f'(x) = \frac{x^2 + 1}{(x+1)^2} e^x$
 - b) Donner le tableau de variation de f
- 3) a) Montrer que l'équation f(x) = 0 admet dans $]-1, +\infty[$ une unique solution α et que $1,5 < \alpha < 1,6$.
 - b) Vérifier que $e^{\alpha} = \frac{\alpha + 1}{\alpha 1}$ et que $f(-\alpha) = 0$
- 4) a) Calculer $\lim_{x \to +\infty} \frac{f(x)}{x}$. Interpréter graphiquement le résultat.
 - b) Tracer la courbe ζ.

Exercice 12

A) On considère la fonction f définie sur IR par : $\begin{cases} f(x) = x - 1 + e^x & \text{si } x \le 0 \\ f(x) = x - x \ln x & \text{si } x > 0 \end{cases}$

Soit (C) sa courbe représentative (unité graphique 2cm)

- 1) a) Montrer que f est continue en 0
 - b) Montrer que f est dérivable à gauche en 0 est que le nombre dérivé à gauche en 0 est 2
 - c) Etudier la dérivabilité de f à droite en 0
- 2) a) Etudier les variations de f sur $]-\infty$, 0] puis sur]0, $+\infty[$
- b) En déduire le tableau de variation de f sur IR
- 3) a) Montrer que la droite Δ : y = x 1 est une asymptote à (C) au voisinage de $-\infty$
 - b) Préciser pour $x \le 0$, la position de (C) par rapport à Δ

- c) Préciser pour x > 0, la position de (C) par rapport à Δ' : y = x
- d) Déterminer une équation cartésienne de la tangente T à la courbe (C) au point A(e, 0)
- 4) Tracer Δ , Δ' , T et (C)
- B) Soit g la restriction de f à l'intervalle $[1, +\infty]$
- 1) a) Montrer que g admet une fonction réciproque g^{-1} définie sur un intervalle J que l'on précisera. On désigne par (C') la courbe représentative de g^{-1}
 - b) Vérifier que la droite T définie dans A)3)d) est tangente à la courbe (C') au point B(0, e)
 - c) Tracer (C')
- 2) Soit I(1, 1). Calculer en cm², l'aire du domaine limité par les axes de coordonnées l'arc [IA] de la courbe (C) et l'arc [IB] de la courbe (C')

- A) Soit f la fonction définie sur IR par : $f(x) = \frac{e^{2x}}{1 + e^{2x}}$ et soit (C) sa courbe représentative
- 1) a) Calculer $\lim_{x \to -\infty} f(x)$ et $\lim_{x \to +\infty} f(x)$
 - b) Montrer que pour tout réel x on a : $f'(x) = \frac{2e^{2x}}{(1+e^{2x})^2}$
 - c) Montrer que le point $I\left(0, \frac{1}{2}\right)$ est un centre de symétrie de (C)
 - d) Donner une équation cartésienne de la tangente T à (C) au point I
- 2) a) Montrer que pour tout réel t on a : $f'(t) \le \frac{1}{2}$
 - b) En intégrant les deux membres de l'inégalité précédente, montrer que pour $x \ge 0$ on a : $f(x) \le \frac{1}{2}(x+1)$
 - c) Déterminer alors la position de (C) par rapport à T
- 3) Tracer (C) et T
- 4) a) Montrer que f est une bijection de IR sur [0, 1]
 - b) Soit $y \in [0, 1]$. Déterminer le réel x tel que f(x) = y
 - c) En déduire la représentation graphique dans le même repère de la fonction g définie sur]0 , 1[par :

$$g(x) = \frac{1}{2} \ln \left(\frac{x}{1 - x} \right)$$

- B) On considère la suite $(I_n)_{n \in IN^*}$ définie pour tout entier naturel n non nul par : $I_n = \int_{-1}^{0} \frac{e^{2nt}}{1 + e^{2t}} dt$
- a) Montrer que la suite $(I_n)_{n \in \mathbb{N}^*}$ est décroissante et positive
- b) En déduire que la suite $(I_n)_{n \in \mathbb{N}^*}$ est convergente

- c) Montrer que pour tout entier naturel n non nul on a : $I_n \le \frac{1}{2n}$
- d) En déduire $\lim_{n\to+\infty} I_n$

<u>Exercice 14</u>

I) On a représenté ci-dessous, les courbes (C) et (Γ), représentatives d'une fonction f définie et dérivable sur IR et sa fonction dérivée f'.



- 1) Reconnaître la courbe représentative de f et celle de f'.
- 2) Déterminer f (0), f '(0), f(-1) et f '(-1).
- 3) Calculer l'aire A de la partie du plan limitée par la courbe de f', l'axe des abscisses et les droites d'équations x = -1 et x = 0.
- II) La fonction f est définie sur IR par $f(x) = (x+1)^2 e^{-x}$.
- 1) a) A l'aide d'une double intégration par parties, montrer que $\int_{\text{--}1}^0\!f(x)\,dx=2e-5$.
- b) Déterminer l'aire A' de la partie du plan limitée par les courbes (C) et (Γ) et les droites d'équations x = -1 et x = 0.
- 2) Soit g la restriction de f à l'intervalle $[1, +\infty[$.
 - a) Montrer que g réalise une bijection de $[1, +\infty[$ sur un intervalle J que l'on précisera.
 - b) Montrer que l'équation g(x)=0 admet dans $\left[1,+\infty\right[$ une solution unique α et que $1,41<\alpha<1,42$.
 - c) Montrer que g^{-1} est dérivable en α et que $g^{-1}(\alpha) = \frac{\alpha+1}{\alpha(1-\alpha)}$, (g^{-1} désigne la fonction réciproque de g).

Exercice 15

- I) Soit f la fonction définie sur IR par $f(x) = e^x x$.
- 1) Dresser le tableau de variation de f.
- 2) En déduire que pour tout réel x, $e^x x \ge 1$.
- II) Dans la figure ci-dessous est représentée, dans un repère orthonormé (O, i, j), la courbe C_g d'une fonction g définie, continue et dérivable sur $]0, +\infty[$.

La droite d'équation x = 0 est une asymptote à la courbe C_g .

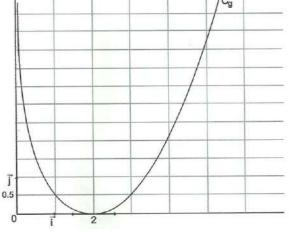
La courbe C_g admet une branche parabolique de direction (O,j) au voisinage de $+\infty$.

- 1) a) Déterminer g(1), g(2) et g(3).
 - b) Déterminer $\lim_{x\to 0^+} g(x)$, $\lim_{x\to +\infty} g(x)$ et $\lim_{x\to +\infty} \frac{g(x)}{x}$
 - c) Déterminer le signe de g'(x).
- 2) Soit h la fonction définie sur $]0, +\infty[$ par $h(x) = e^{g(x)}$ et soit C_h sa courbe représentative.
 - a) Calculer h(1), h(2) et h(3).
 - b) Justifier que $\lim_{x\to 0^+} h(x) = +\infty$ et $\lim_{x\to +\infty} h(x) = +\infty$.
 - c) En écrivant $\frac{h(x)}{x} = \frac{e^{g(x)}}{g(x)} \frac{g(x)}{x}$, pour x > 2 montrer que la courbe C_h admet au voisinage de $+\infty$, une

branche parabolique de direction (O, j).

- d) Dresse le tableau de variation de g.
- 3) Soit $\alpha > 0$.

- a) Calculer la distance MN en fonction de $g(\alpha)$.
- b) Montrer que la distance MN est minimale lorsque $\alpha = 2$.
- 4) Tracer la courbe C_h .



<u>Exercice 16</u>

On a représenté ci-contre, la courbe (ζ) d'une fonction f définie, dérivable et strictement croissante sur -1,1.

Les droites (Δ) et (Δ') d'équation

respectives x = -1 et x = 1 sont les asymptotes à (ζ) .

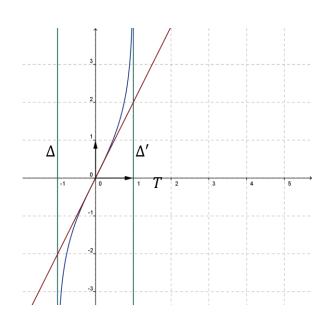
La droite (T) est la tangente à (ζ) en O.

- 1) En utilisant le graphique déterminer f(0) et f'(0).
- 2) Soit g la fonction réciproque de f et (ζ') sa courbe représentative



- b) Tracer la courbe (ζ')
- 3) Sachant que l'expression de g est de la forme

 $g(x) = \frac{e^x + a}{e^x + b}$, pour tout $x \in IR$, montrer en utilisant ce



qui précède que $g(x) = \frac{e^x - 1}{e^x + 1}$, pour tout $x \in IR$.

- 4) a) Vérifier que $\frac{1}{e^x + 1} = \frac{e^{-x}}{e^{-x} + 1}$, pour tout $x \in IR$.
 - b) Calculer alors $\int_0^1 g(x) dx$
- 5) Soit A l'aire de la partie du plan limitée les courbes (ζ) et (ζ') les droites d'équations x=1 et y=1
 - a) Montrer que $A = 1 2\int_0^1 g(x) dx$.
 - b) En déduire A.

