Etude de fonctions 4^{eme} Sc Techniques

Dans tous les exercices le plan est rapporté à un repère orthonormé $(0, \vec{t}, \vec{j})$.

Exercice 1

- 1) Soit P la fonction définie sur \mathbb{R} par : $P(x) = 2x^3 + 3x^2 + 1$.
 - a) Dresser le tableau de variation de la fonction P.
 - b) Montrer que l'équation P(x) = 0 admet dans \mathbb{R} une unique solution α et que $-2 < \alpha < -1$.
 - c) Dresser alors le tableau de signe P(x).
- 2) Soit f la fonction définie par : $f(x) = \frac{x+x^3}{1-x^3}$ et soit C_f sa courbe représentative.
 - a) Déterminer le domaine de définition D_f de la fonction f
 - b) Montrer que f est dérivable sur D_f et que pour tout $x \in D_f$ on a ; $f'(x) = \frac{P(x)}{(1-x^3)^2}$
 - c) Dresser alors le tableau de variation de la fonction f.
- 3) Déterminer les asymptotes de C_f .
- 4) a) Déterminer une équation de la tangente T à la courbe \mathcal{C}_f au point d'abscisse 0.
 - b) Préciser la position de C_f par rapport à T.
 - c) Tracer T et C_f . (on prendra $f(\alpha) \simeq -1.1$)

Exercice 2

Soit f la fonction définie sur \mathbb{R} par : $f(x) = \frac{-x^3 + 5x}{x^2 + 3}$ et soit C_f sa courbe représentative.

- 1) a) Déterminer les réels a et b tel que pour tout $x \in \mathbb{R}$ on $a: f(x) = ax + \frac{bx}{x^2 + 3}$
 - b) Montrer que la fonction f est impaire. Que peut-on déduire pour la courbe C_f ?
- 2) a) Montrer que $\forall x \in \mathbb{R}$, on a; $f'(x) = \frac{(1-x^2)(x^2+15)}{(x^2+3)^2}$
 - b) Dresser le tableau de variation de f.
- 3) Donner une équation de la tangente T à C_f à l'origine.
- 4) Soit D la droite d'équation y = -x.
 - a) Etudier la position de C_f relativement à la droite D.
 - b) Montrer que pour tout réel x non nul on $a: f(x) + x = \frac{8}{x\left(1 + \frac{3}{x^2}\right)}$

En déduire $\lim_{x\to +\infty} f(x) + x$. Que peut-on déduire pour la courbe C_f ?

5) Tracer D, T et C_f .

Exercice 3

Soit f la fonction définie par : $f(x) = \frac{x^3 + 2x^2 + 3x - 2}{x^2 + 3}$ et soit C_f sa courbe représentative.

- 1) a) Déterminer le domaine de définition de f
 - b) Montrer que f est dérivable sur \mathbb{R} et que $\forall x \in \mathbb{R}$ on a : $f'(x) = \frac{(x+1)^2(x^2-2x+9)}{(x^2+3)^2}$
 - c) Dresser le tableau de variation de f

- 2) a) Montrer que $\forall x \in \mathbb{R}$ on a : $f(x) = x + 2 \frac{8}{x^2 + 3}$
 - b) Montrer alors que la droite D: y = x + 2 est une asymptote oblique à C_f .
 - c) Etudier la position de C_f et D.
- 3) a) Déterminer une équation cartésienne de la tangente T à \mathcal{C}_f au point d'abscisse 0
 - b) Montrer que T est parallèle à D
 - c) Etudier la position de C_f et T.
- 4) Tracer T, D et C_f .

Exercice 4

Soit f la fonction définie par : $f(x) = 1 - \sqrt{x^2 - 2x + 5}$ et soit C_f sa courbe représentative.

- 1) a) Montrer que f est définie sur \mathbb{R} .
 - b) Montrer que la droite D: x = 1 est un axe de symétrie de C_f .
- 2) a) Montrer que f est dérivable sur \mathbb{R} et déterminer f'(x).
 - b) Préciser le sens de variation de f sur $[1, +\infty[$.
 - c) Montrer que $\lim_{x \to +\infty} f(x) = -\infty$
 - d) Dresser le tableau de variation de f.
- 3) a) Vérifier que $\forall x \in \mathbb{R}$ on a : $f(x) (-x + 2) = \frac{-4}{x 1 + \sqrt{x^2 2x + 5}}$
 - b) Montrer que la droite D_1 : y = -x + 2 est une asymptote oblique à C_f au voisinage de $+\infty$.
 - c) En déduire que la droite D_2 : y = x est une asymptote oblique à C_f au voisinage de $-\infty$.
- 4) Tracer D_1 , D_2 et C_f .

Exercice 5

Soit f la fonction définie sur]0, 4[par : $f(x) = \frac{x-2}{\sqrt{4x-x^2}}$ et soit C_f sa courbe représentative.

- 1) Montrer que f est dérivable sur]0, 4[et que $f'(x) = \frac{4}{(\sqrt{4x-x^2})^3}$
- 2) a) Dresser le tableau de variations de f.
 - b) Montrer que l'équation f(x) = x admet une unique solution α et que $0.9 \le \alpha \le 0.99$.
- 3) a) Montrer que le point A(2,0) est un centre de symétrie de C_f .
 - b) Ecrire une équation de la tangente T à C_f en A.
 - c) Tracer \mathcal{C}_f et T.
- 4) a) Montrer que f réalise une bijection de]0, 4[sur \mathbb{R} .
 - b) Calculer $f^{-1}\left(\frac{\sqrt{3}}{3}\right)$
 - c) Tracer $C_{f^{-1}}$ dans le même repère.

Exercice 6

Soit f la fonction définie sur \mathbb{R} par : $f(x) = \sqrt{x^2 + 8} - x$ et soit C_f sa courbe représentative.

- 1) a) Montrer que $\lim_{x \to +\infty} f(x) = 0$
 - b) Montrer que $\forall x \in \mathbb{R}$ on a : f(x) > 0
- 2) a) Montrer que $\forall x \in \mathbb{R}$ on a : $f'(x) = -\frac{f(x)}{\sqrt{x^2+8}}$
 - b) Dresser le tableau de variation de f.
 - c) Etudier la branche infinie de C_f au voisinage de $-\infty$
- 3) Soit g la fonction définie sur \mathbb{R} par : g(x) = f(x) x
 - a) Montrer que l'équation g(x) = 0 admet dans \mathbb{R} une unique solution α et que 1,6 < α < 1,7
 - b) En déduire le signe de g(x) sur \mathbb{R} .
 - b) Etudier les positions relatives de C_f et de la droite Δ : y = x
 - c) Construire C_f et Δ .

Exercice 7

Soit f la fonction définie sur $]-\infty$, 1] par $f(x)=-\sqrt{1-x}$ et soit \mathcal{C}_f sa courbe représentative.

- 1) a) Etudier la dérivabilité de f à gauche en 1 et interpréter le résultat graphiquement.
 - b) Montrer que f est dérivable sur $]-\infty$, 1[
 - c) Dresser le tableau de variation de f.
- 2) a) Etudier la branche infinie de C_f au voisinage de $-\infty$.
 - b) Montrer que l'équation f(x) = x admet dans $]-\infty$, 1] une unique solution α et que $-2 < \alpha < -1$
 - c) Tracer C_f .
- 3) a) Montrer que $\forall]-\infty$, 0] on a: $f'(x) \le \frac{1}{2}$
 - b) En déduire que $|f(x) \alpha| \le \frac{1}{2}|x \alpha|$

Exercice 8

Soit la fonction f définie par $f(x) = \sqrt{1 - x^3}$ et soit C_f sa courbe représentative.

- 1) a) Montrer que $]-\infty$, 1] est le domaine de définition de f.
 - b) Montrer que f est dérivable sur $]-\infty$, 1[.
 - c) Etudier la dérivabilité de f à gauche en 1 et interpréter le résultat graphiquement
 - d) Dresser le tableau de variation de f.
- 2) Soit la fonction h définie sur $]-\infty$, 1] par h(x) = f(x) x.
 - a) Dresser le tableau de variation de h.
 - b) Montrer que l'équation h(x) = 0 admet dans $]-\infty$, 1] une unique solution α et que $0 < \alpha < 1$
 - c) En déduire le signe de h(x) sur $]-\infty$, 1].
 - d) Etudier les positions relatives de C_f et de la droite D: y = x
- 3) a) Montrer que $\lim_{x \to -\infty} \frac{f(x)}{x} = -\infty$ et interpréter le résultat graphiquement.
 - b) Construire C_f et la droite D (unité graphique 3 cm).

- 4) a) Montrer que f réalise une bijection de $]-\infty$, 1] sur un intervalle J que l'on déterminera.
 - b) La fonction f^{-1} est-elle dérivable en 1 ? Justifier.
 - c) La fonction f^{-1} est-elle dérivable à droite en 0 ? Justifier
 - d) En déduire que f^{-1} est dérivable sur $[0,1] \cup]1,+\infty[$

Exercice 9

Soit f la fonction définie sur]0, $+\infty[$ par $: f(x) = 1 + \frac{1}{\sqrt{x}}]$ et soit C_f sa courbe représentative.

- 1) a) Etudier les variations de f.
 - b) Montrer que f réalise une bijection de]0, $+\infty[$ sur un intervalle J que l'on déterminera.
- 2) Soit f^{-1} la réciproque de f et soit (C') sa courbe.
 - a) Calculer $f^{-1}\left(\frac{3}{2}\right)$ puis $(f^{-1})'\left(\frac{3}{2}\right)$.
 - b) Dresser le tableau de variation de f^{-1} .
 - c) Expliciter $f^{-1}(x)$ pour tout $x \in J$.
- 3) Soit g la fonction définie sur]0, $+\infty$ [par : g(x) = f(x) x.
 - a) Dresser le tableau de variation de g.
 - b) Montrer que l'équation g(x) = 0 admet dans]0, $+\infty[$ une unique solution α et que $1 < \alpha < 2$
 - c) En déduire le signe de g(x) sur]0, $+\infty[$.
 - d) Etudier la position de C_f et la droite Δ : y = x.
- 4) Construire C_f et (C').

Exercice 10

Soit f la fonction définie sur par : $f(x) = -x + \frac{2}{\sqrt{x+1}}$ et soit C_f sa courbe représentative.

- 1) Donner le domaine de définition de f.
- 2) a) Calculer $\lim_{x\to +\infty}$ et $\lim_{x\to -1^+}$
 - b) Dresser le tableau de variation de f.
- 3) a) Montrer que la droite D: y = -x est une asymptote à C_f .
 - b) Etudier la position relative de C_f par rapport à D.
- 4) a) Donner une équation cartésienne de la tangente T à la courbe \mathcal{C}_f au point d'abscisse 0.
 - b) Tracer C_f ; D et T.
- 5) Montrer que l'équation f(x) = x admet dans]-1, $+\infty[$ une unique solution α et que $1 < \alpha < 1.5$
- 6) a) Montrer que f réalise une bijection de]-1, $+\infty[$ sur un intervalle J que l'on déterminera.
 - b) Montrer que f^{-1} la réciproque de f est dérivable sur J.
 - c) Calculer en fonction de α ; $(f^{-1})'(\alpha)$.
 - d) Tracer la courbe (C') de f^{-1} .