Dans tous les exercices le plan P est rapporté à un repère orthonormé direct $(\mathbf{0}, \vec{u}, \vec{v})$.

<u>Exercice 1</u>

Résoudre dans l'ensemble C des nombres complexes les équations suivantes :

$$z^2 - 4z + 16 = 0$$
; $z^2 + 2z + 5 = 0$; $z^2 - (2+i)z + 3 + i = 0$; $z^2 - (3+4i)z - 1 + 5i = 0$
 $z^2 - (1+i)z - 2 + 2i = 0$; $z^2 - 3(1+i)z + 5i = 0$; $z^2 - (1+3i) - 2 + 2i = 0$

Exercice 2

- Résoudre dans C l'équation z² + (1 2i)z 2i = 0
 Soit θ un réel. On considère l'équation (E_θ): z² + (1 2e^{iθ})z 2e^{iθ} = 0 Résoudre dans \mathbb{C} l'équation (E_{θ}) .

On désigne par z_1 la solution indépendante de θ et par z_2 l'autre solution.

3) On considère les points A et M d'affixes respectives z_1 et z_2 .

Soit J le milieu de [AM]. On désigne par z_I l'affixe de J.

- a) Vérifier que pour tout réel θ on a : $z_J + \frac{1}{2} = e^{i\theta}$.
- b) Déterminer l'ensemble des points J lorsque θ varie dans l'intervalle $[0,2\pi]$.
- c) Déterminer les valeurs de θ dans l'intervalle $[0, 2\pi]$ pour lesquels les points :
- O, A et J sont alignés.

Exercice 3

- 1) Résoudre dans \mathbb{C} l'équation : $z^2 2z + 2 = 0$.
- 2) Soit $\theta \in]-\pi$, $\pi[$ et soit dans $\mathbb{C}1$ 'équation :

$$(E): z^2 - 2(1 + \cos \theta)z + 2(1 + \cos \theta) = 0$$

- a) Résoudre dans \mathbb{C} , l'équation (E).
- b) Ecrire ses solutions z' et z'' sous forme trigonométrique.
- 3) On désigne par M' et M'' les points d'affixes respectives z' et z''

En déduire que lorsque θ varie dans $]-\pi$, $\pi[$ les deux points M' et M'' appartiennent à un même cercle que l'on précisera.

- 4) Dans cette question on suppose que $\theta = \frac{\pi}{2}$
 - a) Calculer z' et z'' (On désigne par z' la solution dont la partie imaginaire est positive)
 - b) Déterminer les ensembles suivant :

$$E = \{M(z)/|z-z'| = |z-z''|\}$$
 et $F = \{\{M(z) \in P/|z-z'| = 2|z-z''|\}\}$

- 1) Résoudre dans C l'équation $z^2 3z + 3 i = 0$
- 2) Soit dans C l'équation (E): $z^3 2z^2 iz + 3 i = 0$
 - a) Montrer que l'équation (E) admet une unique solution réelle.

b) Trouver les nombres complexes a, b et c tel que :

$$z^3 - 2z^2 - iz + 3 - i = (z+1)(az^2 + bz + c)$$

- c) Résoudre alors dans \mathbb{C} l'équation (E).
- 3) Soient les points A, B et C d'affixes respectives : -1; 1-i et 2+i
 - a) Placer les points A, B et C
 - b) Montrer que le triangle ABC est rectangle et isocèle.
 - c) Déterminer l'affixe du point D pour que ABCD soit un carré

Exercice 5

- 1) a) Résoudre dans C l'équation : $z^2 2\sqrt{3}z + 4 = 0$
 - b) Ecrire les solutions trouvées sous la forme exponentielle
 - c) En déduire les solutions de l'équation : $z^4 2\sqrt{3}z^2 + 4 = 0$
- 2) Soit l'équation (E): $z^3 + 2(i \sqrt{3})z^2 + 4(1 i\sqrt{3})z + 8i = 0$
 - a) Vérifier -2i est une solution de (E)
 - **b)** On pose $P(z) = z^3 + 2(i \sqrt{3})z^2 + 4(1 i\sqrt{3})z + 8i$

Déterminer les complexes a, b et c tel que $\forall z \in C$; $P(z) = (z + 2i)(az^2 + bz + c)$.

- c) Résoudre alors l'équation (E).
- 3) Dans le plan complexe, on considère les points A, B et C d'affixes respectives :

$$z_0 = -2i$$
; $z_1 = \sqrt{3} + i$ et $z_2 = \sqrt{3} - i$

- a) Placer les points A, B et C
- b) Montrer que le quadrilatère OACB est un losange.

Exercice 6

Soit (E): $z^2 - 2iz - 1 - ie^{2i\theta} = 0$ avec θ un réel de l'intervalle $[0, \pi]$

- 1) Résoudre (E) pour $\theta = \frac{\pi}{4}$
- 2) a) Vérifier que $e^{i\left(\theta+\frac{\pi}{4}\right)}$ est une racine carrée de $ie^{2i\theta}$
 - b) Résoudre (E)
- 3) On désigne par , B , C et I les points d'affixes respectives : 2i , $i + e^{i\left(\theta + \frac{\pi}{4}\right)}$, $i e^{i\left(\theta + \frac{\pi}{4}\right)}$ et iSoit C le cercle de centre I et de rayon 1.
 - a) Calculer les affixes des vecteurs \overrightarrow{IB} et \overrightarrow{IC} . En déduire que [BC] est un diamètre du cercle C
 - b) Montrer alors que pour $\neq \frac{\pi}{4}$, le quadrilatère *OBAC* est un rectangle

Exercice 7

- 1) Résoudre dans \mathbb{C} ; l'équation $(1+i)z^2 2z + 1 i = 0$
- 2) Soit m un nombre complexe de module $\sqrt{2}$

Résoudre dans \mathbb{C} ; l'équation (E): $mz^2 - 2z + \overline{m} = 0$ où \overline{m} est le conjugué de m

3) Dans toute la suite on prend $m = \sqrt{2}e^{i\alpha}$ où α est un réel

a) Montrer que les racines z' et z'' de l'équation (E) s'écrivent sous la forme

$$\mathbf{z}' = e^{i\left(\frac{\pi}{4} - \alpha\right)}$$
 et $\mathbf{z}' = e^{-i\left(\frac{\pi}{4} + \alpha\right)}$

b) Dans le plan complexe rapporté à un repère orthonormé $(\mathbf{0}, \vec{\mathbf{u}}, \vec{\mathbf{v}})$, on désigne par M' et M'' les points d'affixes respectives z' et z'' et par M le point d'affixe z' + z''.

Montrer que $\frac{z'}{a''} = i$. En déduire que les vecteurs $\overrightarrow{OM'}$ et $\overrightarrow{OM''}$ sont orthogonaux.

c) Montrer que le quadrilatère *OM'MM''* est un carré.

<u>Exercice 8</u>

- Soit, dans C, l'équation (E): 2z² √3(√3 + i)z + 1 + i√3 = 0.
 a) Vérifier que 1 est une racine de l'équation (E).

 - b) Déduire l'autre racine de (E).
- 2) On considère les points A et B d'affixes respectives $z_A = \frac{1+i\sqrt{3}}{2}$ et $z_B = iz_A$

On désigne par I le milieu de [AB] et on note z_I l'affixe de I.

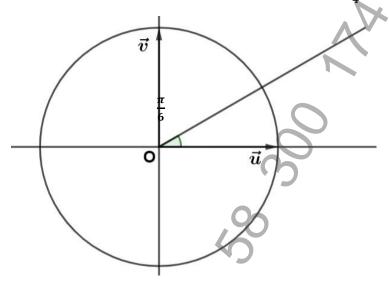
- a) Donner la forme exponentielle de z_A et z_B
- b) Placer les points A : B et I dans le repère $(0, \vec{u}, \vec{v})$.
- 3) a) Montrer que le triangle OAB est isocèle et rectangle.
 - b) En déduire que $OI = \frac{\sqrt{2}}{2}$ et que $(\vec{u}, \vec{OI}) = \frac{7\pi}{12} + 2k\pi$; $k \in \mathbb{Z}$.
 - c) Ecrire z_I sous la forme algébrique et en déduire la valeur exacte de $\cos \frac{7\pi}{12}$ et $\sin \frac{7\pi}{12}$

Exercice 9

Soit un réel $\theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

- 1) Résoudre dans \mathbb{C} l'équation (E): $z^2 (i + 2e^{i\theta})z + e^{2i\theta} + ie^{i\theta} = 0$
- 2) Dans le plan complexe muni d'un repère orthonormé direct $(0, \vec{u}, \vec{v})$, on considère les points A, B et C d'affixes respectives $z_A = i$, $z_B = i + e^{i\theta}$ et $z_C = e^{i\theta}$
 - a) Vérifier que $\frac{z_A-z_B}{z_B-z_C}=ie^{i\theta}$
 - b) Montrer que les points A, B et C sont alignés si et seulement si $\theta = \frac{\pi}{2}$ ou $\theta = -\frac{\pi}{2}$
- 3) dans cette question on suppose que $\theta \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$
 - a) Justifier que le quadrilatère OABC est un losange.
 - **b)** Vérifier que $1 + e^{2i\theta} = 2\cos(\theta) e^{i\theta}$.
 - c) On désigne par $\mathcal{H}(\theta)$ l'aire du losange *OABC*. Montrer que $\mathcal{H}(\theta) = \cos(\theta)$
- 4) a) Express Expression Expression 4) a) Expression Expression Expression 4) a) Expression Expres
- **b)** Montrer que $\frac{\sqrt{2}}{4}(1+i\sqrt{3})(1-i)=e^{i\frac{\pi}{12}}$.
- c) En déduire la valeur exacte de $\cos \frac{\pi}{12}$.

d) Construire alors dans la figure ci- dessous, un losange d'aire égale à $\frac{\sqrt{2}+\sqrt{6}}{4}$



Exercice 10

1) Résoudre dans \mathbb{C} l'équation $z^2 - (1+i)z + i = 0$

2) Soit θ un réel de l'intervalle $\left]0, \frac{\pi}{2}\right[$, soit dans \mathbb{C} l'équation : $(E_{\theta}): z^2 - 2e^{i\theta}\cos\theta z + e^{2i\theta} = 0$

a) Vérifier que 1 est solution de l'équation (E_{θ})

b) En déduire l'autre solution de (E_{θ}) .

3) On désigne par A et B les points d'affixes respectives 1 et $e^{2i\theta}$.

a) Déterminer l'ensemble des points B quand θ varie dans l'intervalle $\left[0, \frac{\pi}{2}\right]$.

b) Déterminer l'affixe du point C tel que OACB est un losange.

c) Déterminer les réels θ pour que la mesure de l'aire du losange OACB soit égale à $\frac{1}{2}$

Exercice 11

1) a) Vérifier que $(9 + 2i)^2 = 77 + 36i$

b) Résoudre dans \mathbb{C} , l'équation $z^2 + (9-2i)z - 18i = 0$

2) Déterminer dans \mathbb{C} les solutions de l'équation $z^4 + (9-2i)z^2 - 18i = 0$

On donnera les solutions sous forme trigonométrique.

3) Soient les points A et B d'affixes respectives 1 + i et 3i

a) Placer les points A et B.

b) Soit C le point d'affixe $1+\alpha i$ où $\in \mathbb{R}$, Déterminer α pour que ABC soit un triangle rectangle en C

Exercice 12

1) Soit l'équation complexe (E): $z^3 + (i - \sqrt{3})z^2 + (1 - i\sqrt{3})z + i = 0$

a) Montrer que l'équation (E) admet une solution imaginaire que l'on déterminera.

b) Déterminer les nombres complexes a, b et c tel que tel que $\forall z \in \mathbb{C}$ on a :

 $z^{3} + (i - \sqrt{3})z^{2} + (1 - i\sqrt{3})z + i = (z + i)(az^{2} + bz + c)$

c) Résoudre dans $\mathbb C$ l'équation (E).

2) Soit $\theta \in]0$, $\pi[$.

- a) Résoudre dans \mathbb{C} l'équation (E_{θ}) ; $z^2 2e^{i\theta}z + (2i\sin\theta)e^{i\theta} = 0$
- b) Vérifier que les solutions de (E_{θ}) s'écrivent sous la forme : $(2\cos\frac{\theta}{2})e^{i\frac{\theta}{2}}$ et $(2\sin\frac{\theta}{2})e^{i(\frac{\theta}{2}+\frac{\pi}{2})}$
- c) Déterminer alors les solutions de l'équation (E'_{θ}) ; $z^4 2e^{i\theta}z^2 + (2i\sin\theta)e^{i\theta} = 0$ sw.

Exercice 13

Soit α un réel de l'intervalle $[0, \pi]$.

- 1) Vérifier que : $e^{2i\alpha} 2ie^{i\alpha} \sin \alpha = 1$
- 2) Résoudre dans $\mathbb C$ l'équation : $z^2-2e^{2i\alpha}z+2ie^{i\alpha}\sin\alpha=0$
- 3) On désigne par , M' , M'' les points d'affixes respectives $e^{i\alpha}$, $e^{i\alpha}-1$, et $e^{i\alpha}+1$
 - a) Montrer que M est le milieu du segment [M'M''] et que $\overrightarrow{MM'} = -\overrightarrow{u}$
 - b) Placer le point M dans le cas où $\alpha \in \left]0, \frac{\pi}{6}\right[$ et construire alors les points M' et M''
- 4) a) Montrer que $OM = \frac{1}{2}M'M''$ et en déduire que OM'M'' est un triangle rectangle.
 - b) Déterminer α pour que le tringle OM'M'' soit isocèle.

Exercice 14

- 1) a) Vérifier que $(2\sqrt{3} 2i)^2 = 8 8i\sqrt{3}$
 - b) Résoudre dans \mathbb{C} l'équation $(E): z^2 2(1+i\sqrt{3})z + 4(-1+i\sqrt{3}) = 0$
- 2) Dans le plan complexe muni d'un repère orthonormé direct $(0, \vec{u}, \vec{v})$, on considère les points A, B et C d'affixes respectives $z_A = 1 + \sqrt{3} i(1 \sqrt{3}), \ z_B = 2 + 2i\sqrt{3}$

et
$$z_C = 1 - \sqrt{3} + i(1 + \sqrt{3})$$
.

- a) Montrer que $z_c = iz_A$
- b) En déduire que le triangle OAC est rectangle isocèle.
- c) Montrer que le quadrilatère OABC est un carré.
- 3) a) Montrer que $z_B = 4e^{i\frac{\pi}{3}}$
 - **b**) Construire le point *B*.
 - c) Construire les points A et C.
- 4) Soit $\theta \in [0, \pi]$. On désigne par M le point du plan d'affixe $z_M = 1 + i\sqrt{3} + 2e^{i\theta}$
 - a) Pour quelle valeur de θ a-t-on M = B?
- b) Montrer que lorsque θ varie dans $[0,\pi]$, le point M appartient au cercle circonscrit au triangle OAB.

- I) On considère dans \mathbb{C} l'équation (E): $z^2 4iz 2 + 2i\sqrt{3} = 0$
- 1) a) Vérifier que $a = 1 + i(2 \sqrt{3})$ est une solution de (E).
- **b)** Déduire l'autre solution b de (E).
- 2) a) Montrer que $a^2 = 4(2 \sqrt{3})e^{i\frac{\pi}{6}}$

- **b)** Déduire que $a = (\sqrt{6} \sqrt{2})e^{i\frac{\pi}{12}}$ puis que $b = (\sqrt{6} + \sqrt{2})e^{i\frac{7\pi}{12}}$
- II) Le plan complexe est rapporté à un repère orthonormé $(0, \vec{u}, \vec{v})$.

Soient α un réel de $\left]-\frac{\pi}{3}\right|$, $\frac{2\pi}{3}$ et A, B et M les points d'affixes respectives :

 $z_A = a$; $z_B = b$ et $z_M = 2i + 2e^{i\alpha}$. On note \mathcal{T} le cercle de diamètre [AB]

- 1) Préciser l'affixe du point I le centre de **C**.
- 2) a) Montrer que $\frac{a}{b} = -i(2 \sqrt{3})$ et déduire que $0 \in \mathcal{C}$.
 - b) Tracer le cercle \mathcal{T} puis placer les points A et B.
- 3) a) Montrer que $M \in \mathcal{C}$.
 - b) Lorsque $\alpha = \frac{\pi}{6}$, écrire z_M sous forme exponentielle puis placer M.
- 4) a) Montrer que $AM = 2\left|1 e^{-i\left(\frac{\pi}{3} + \alpha\right)}\right|$ et que $BM = 2\left|1 + e^{-i\left(\frac{\pi}{3} + \alpha\right)}\right|$
 - b) Déduire que AM = BM signifie $\tan\left(\frac{\pi}{6} + \frac{\alpha}{2}\right) = 1$
 - c) Déterminer alors la valeur de α pour que le triangle ABM soit isocèle en M.

Exercice 16

- 1) a) Résoudre dans \mathbb{C} l'équation : $z^2 2\sqrt{3}z + 4 = 0$
 - b) Ecrire les solutions trouvées sous la forme exponentielle.
 - c) En déduire les solutions de l'équation : $z^4 2\sqrt{3}z^2 + 4 = 0$.
- 2) Soit l'équation (E): $z^3 + 2(-\sqrt{3} + i)z^2 + 4(1 i\sqrt{3})z + 8i = 0$.
 - a) Montrer que l'équation (E) admet une unique solution imaginaire que l'on déterminera.
 - **b)** On pose $P(z) = z^3 + 2(-\sqrt{3} + i)z^2 + 4(1 i\sqrt{3})z + 8i$

Déterminer les complexes a, b et c tel que : $\forall z \in \mathbb{C}$; $P(z) = (z + 2i)(az^2 + bz + c)$

- c) Résoudre alors l'équation (E).
- 3) Dans le plan complexe, on considère les points A, B et C d'affixes respectives :

$$z_A = -2i$$
; $z_B = \sqrt{3} + i$ et $z_C = \sqrt{3} - i$

- a) Placer les points A, B et C.
- b) Montrer que le quadrilatère OABC est un losange.
- 4) On pose $w = \frac{z_B}{z_C}$
 - a) Donner la forme trigonométrique de w.
 - b) On désigne par M,M_1 et M_2 les points d'affixes respectives z,wz et w^2z où $z\in\mathbb{C}^*$
 - c) Montrer que le quadrilatère OABC est un losange.

- 1) Montrer que $ie^{i\frac{\pi}{6}} = \left(e^{i\frac{\pi}{3}}\right)^2$
- 2) Résoudre dans \mathbb{C} l'équation : $z^2 2\left(e^{i\frac{\pi}{12}}\right)z + (1-i)e^{i\frac{\pi}{6}} = 0$

- 3) On désigne par , B et C les points d'affixes respectives : $e^{i\frac{\pi}{3}}$, $e^{i\frac{\pi}{12}}$ et $e^{i\frac{\pi}{3}} + e^{i\frac{\pi}{12}}$
 - a) Montrer que le quadrilatère OACB est un losange
 - b) Placer les points , B et C
 - c) Calculer l'air du losange OACB

Exercice 18

1) on considère dans \mathbb{C} , l'équation $(E): \mathbf{z}^2 - 4(4-3i) + 1 - 7i = 0$

Résoudre l'équation (E).

2) On considère les points A, B et C d'affixes respectifs $z_A = 3 - t$, $z_B = 1 - 2i$ et $z_C = 1 + 3i$

On désigne par (C) le cercle de diamètre [BC]

- a) Placer les points A, B et C
- **b)** Calculer $\frac{z_A z_B}{z_A z_C}$
- c) En déduire que le point A appartient au cercle (C)

Dans la suite de l'exercice M désigne un point du cercle (C) différent de cercle B et C

- 3) On pose $z_M = x + iy$ avec x et y deux réels. On note Ω le centre de (C)
 - a) Vérifier que $z_{\Omega} = 1 + \frac{1}{2}i$ et calculer ΩA
 - **b)** Montrer que $(x-1)^2 + (y-\frac{1}{2})^2 = \frac{25}{4}$
- 4) Soit H le projeté orthogonal du point M sur la droite (BC) et on désigne par S l'aire du triangle MBC
 - a) Justifier que $z_H = 1 + iy$
 - **b)** Montrer que $S = \frac{5}{2}|x-1|$
 - c) Déterminer les affixes du point M pour lesquels S = 5

Exercice 19

On considère les points, B et C d'affixes respectifs $z_A = \left(1 + \frac{\sqrt{3}}{2}\right)i$, $z_B = \frac{\sqrt{3}-1}{2} + \frac{1}{2}i$ et $z_C = -\frac{1}{2} + i$

- 1) a) Vérifier que $z_A z_C = \frac{1}{2} + \frac{\sqrt{3}}{2}i$ et $z_B z_C = \frac{\sqrt{3}}{2} \frac{1}{2}i$
 - b) Montrer que A et B appartiennent au cercle (C) de centre C et de rayon 1
 - c) Vérifier que $z_A z_C = i(z_B z_C)$. En déduire que le triangle CAB est rectangle en C
- 2) Dans la figure ci-contre on a tracé le cercle (C).

Construire les points A et B

- 3) a) Vérifier que $(2+2\sqrt{3})i$ est une racine carré de $-16-8\sqrt{3}$
 - b) Résoudre dans \mathbb{C} , l'équation $(E): z^2 + 3z + \frac{25}{4} + 2\sqrt{3} = 0$
- 4) Soient les points K et L d'affixes respectifs $z_K = -\frac{3}{2} + i(1+\sqrt{3})$ et $z_L = \overline{z_K}$
- a) Montrer que $\frac{z_K-z_A}{z_A-z_C}=i\sqrt{3}$. En déduire que $(AK)\perp(AC)$
 - **b)** Construire *K* et *L*

- c) Vérifier que $z_B z_L = (2 + \sqrt{3})(z_A z_C)$. En déduire que (BL)//(FC)
- d) Les droites (AK) et (BL) se coupent en un point D.

Montrer que le cercle (C) est inscrit dans le triangle DKL.

Exercice 20

- 1) a) Vérifier que $(\sqrt{3} 3i)^2 = -6 6\sqrt{3}i$
 - b) Résoudre dans \mathbb{C} l'équation : $z^2 (\sqrt{3} + i)z + 2 + 2\sqrt{3}i = 0$
- 2) Soient les points A et B d'affixes respectives : 2i et $\sqrt{3} i$
 - a) Ecrire sous forme trigonométrique les complexes 2i et $\sqrt{3}-i$
 - b) Placer dans le plan les points A et B
- 3) a) Soit le C point du plan tel que $\overrightarrow{AC} = \overrightarrow{OB}$ déterminer l'affixe du point C.
 - b) Montrer que le point C appartient au cercle de centre O et passant par A
 - c) Montrer que le quadrilatère *OACB* est un losange.

Exercice 21

- 1) a) Déterminer le module et un argument du complexe : $-2\sqrt{3} 2i$.
 - b) Résoudre dans \mathbb{C} l'équation : $z^2 = -2\sqrt{3} 2i$ on donnera les solutions sous la forme exponentielle
- 2) Soit $u = \sqrt{2 \sqrt{3}} i\sqrt{2 + \sqrt{3}}$
 - a) Calculer u^2
 - b) En déduire le module et un argument de u.
- 3) Déterminer les valeurs exactes de $\cos \frac{7\pi}{12}$ et $\sin \frac{7\pi}{12}$

Exercice 22

1) On donne les points A, B et C d'affixes respectives $\sqrt{3} + i$; $-\sqrt{3} + i$ et 2i

Montrer que le quadrilatère OACB est un losange.

- 2) a) Résoudre dans \mathbb{C} l'équation (E): $z^2 2iz 4 = 0$
 - b) Donner la forme exponentielle de chacune des solutions de (E).
- 3) Soit $p(z) = z^3 4iz^2 8z + 8i$
 - a) Vérifier que p(2i) = 0
 - b) Déterminer les nombres complexes m et p tels que $p(z) = (z 2i)(z^2 + mz + p)$.
 - c) Résoudre alors l'équation p(z) = 0.

Soit
$$P(z) = z^3 + (1-2i)z^2 - (1+6i)z - 5$$
; $z \in \mathbb{C}$

- 1) a) Montrer que P(z) = 0 admet une solution imaginaire que l'on déterminera.
 - **b)** Déterminer les complexes a, b et c tel que $\forall z \in \mathbb{C}$; $P(z) = (z i)(az^2 + bz + c)$.
 - e) Résoudre alors l'équation : P(z) = 0
- 2) On considère les A, B et C d'affixes respectives $z_A = i$; $z_B = 1 + 2i$ et $z_C = -2 i$
 - a) Placer les points A, B et C.

- b) Montrer que les points A, B et C sont alignés
- 3) a) Montrer que OBC est un triangle isocèle.
 - b) Déterminer l'affixe z_D du point D pour que OBDC soit un losange.

- 1) a) Résoudre dans l'ensemble $\mathbb C$ l'équation (E): $z^2 \sqrt{2}(1+i)z 1 + i = 0$
 - b) Ecrire les solutions sous la formes exponentielle.

2) En déduire les solutions de chacune des équations suivantes :
$$(E_1): z^4 - \sqrt{2}(1+i)z^2 - 1 + i = 0 \quad \text{et} \quad (E_1): z^6 - \sqrt{2}(1+i)z^3 - 1 + i = 0$$

