Dans tous les exercices le plan P est rapporté à un repère orthonormé direct $(0, \vec{u}, \vec{v})$.

Exercice 1

- 1) a) Calculer $(\sqrt{3} 3i)^2$
 - b) Résoudre dans \mathbb{C} l'équation : $z^2 (\sqrt{3} + i)z + 2 + 2i\sqrt{3} = 0$
- 2) Soient les points A et B d'affixes respectives : 2i et $\sqrt{3} i$
 - a) Ecrire sous forme trigonométrique les complexes 2i et $\sqrt{3}-i$
 - b) Placer dans le plan les points A et B
- 3) a) Déterminer l'affixe du point C tel que $\overrightarrow{AC} = \overrightarrow{OB}$.
 - b) Montrer que le point C appartient au cercle de centre O et passant par A
 - c) Montrer que le quadrilatère OACB est un losange

Exercice 2

Soit dans \mathbb{C} l'équation (E): $z^2 - 2iz - (1 + a^2) = 0$ où a est un paramètre complexe.

- 1) a) Résoudre dans $\mathbb C$ l'équation (E), on notera par z_1 et z_2 ses solutions.
 - b) Montrer que $|z_1| = |z_2| \Leftrightarrow a \in R$.
- 2) Soient les points A, B, M, N et I d'affixes respectives 1; -1 + 2i; i + a; i a et i.
 - a) Montrer que M et N sont symétriques par rapport au point I.
 - b) Montrer que lorsque $M \notin (AB)$ AMBN est un parallélogramme.
- 3) On suppose que $a = e^{i\theta} + 1 i$; où $\theta \in [0, 2\pi]$
 - a) Montrer que lorsque θ varie ; le point M varie sur le cercle $\mathcal T$ de centre A et de rayon 1.

Exercice 3

- 1) Résoudre dans l'ensemble $\mathbb C$ des nombres complexes l'équation : $(1+i)z^2-2z+1-i=0$
- 2) Soit m un nombre complexe de module $\sqrt{2}$ et dont un argument est α .

Résoudre dans $\mathbb C$ l'équation (E): $mz^2-2z+\overline{m}=0$, où \overline{m} est le nombre complexe conjugué de m.

3) a) Montrer que les racines z' et z'' de l'équation (E) s'écrivent sous la forme :

$$\mathbf{z}' = e^{i\left(\frac{\pi}{4} - \alpha\right)}$$
 et $\mathbf{z}'' = e^{-i\left(\frac{\pi}{4} + \alpha\right)}$

b) On désigne par M' et M'' les points d'affixes respectives z' et z'' et par M le point d'affixe z' + z''

Montrer que $\frac{z'}{z''} = i$. En déduire que les vecteurs $\overrightarrow{OM'}$ et $\overrightarrow{OM''}$ sont orthogonaux

c) Montrer que le quadrilatère OM'MM'' est un carré.

Exercice 4

Soit le nombre complexe $u = \frac{\sqrt{6} + \sqrt{2}}{2} + \frac{\sqrt{6} - \sqrt{2}}{2}i$

- 1) a) Ecrire u^2 sous la forme exponentielle.
 - b) En déduire l'écriture exponentielle de *u*.

- 2) Donner les valeurs exactes de $\cos \frac{\pi}{12}$ et $\sin \frac{\pi}{12}$
- 3) a) Construire les points A et B d'affixes respectives u et iu^2 .
 - b) Déterminer l'ensemble E des points M d'affixes z tel que $arg\left(\frac{iz+u^2}{z-u}\right) \equiv -\frac{11\pi}{12}[2\pi]$
 - c) Vérifier que O appartient à E puis tracer E.

1) Résoudre dans C l'équation $z^2 - (5-4i)z - 3 - 15i = 0$.

On désigne par A, B, A'et B' les points d'affixes respectifs : -3i; 5-i; -3 et 1+5i.

- 2) a) Placer les points A, B, A'et B'
 - b) Montrer que *OAA'* et *OBB'* sont des triangles rectangles et isocèles.
- 3) Soit M un point de la droite (AB) d'affixe z_M .
 - a) Montrer qu'il existe un réel k tel que $z_M = 5k + (2k 3)i$.
- b) Montrer que les droites (OM) et (A'B') sont perpendiculaires si et seulement si le point M est le milieu du segment [AB].

Vérifier que dans ce cas on a : A'B' = 20M.

<u>Exercice 6</u>

- 1) a) Donner la forme exponentielle du complexe $4\sqrt{2}(-1+i)$.
 - b) Résoudre alors dans C l'équation $z^3 = 4\sqrt{2}(-1+i)$
- 2) soit $\theta \in]0, \frac{\pi}{2}[$. Montrer que : $\frac{2z-1}{z} = 2e^{i\theta} \Leftrightarrow z = \frac{1}{4} + \frac{1}{4}i \cot an(\frac{\theta}{2})$
- 3) Résoudre dans \mathbb{C} l'équation $(2z-1)^3 = 4\sqrt{2}(-1+i)z^3$

Exercice 7

Soit m un réel non nul.

- 1) Résoudre dans C l'équation : $z^2 2iz (1 + m^2) = 0$.
- 2) Pour tout complexe z, on pose : $f(z) = z^3 3iz^2 (3 + m^2)z + i(1 + m^2)$.
 - a) Vérifier que f(i) = 0 et en déduire une factorisation de f(z).
 - b) Résoudre dans \mathbb{C} l'équation : f(z) = 0.
- 3) On considère les points A, M' et M'' d'affixes respectives : i, i + m et i m.
 - a) Vérifier que A est le milieu du segment [M'M''].
 - b) Montrer que le triangle OM'M'' est isocèle.
 - c) Déterminer les valeurs de m pour que le triangle OM'M'' soit équilatéral.

Exercice 8

- 1) Soit l'équation (E_{θ}) : $z^2 4e^{i\theta}z + 4e^{2i\theta} + 2 2i\sqrt{3} = 0$
 - a) Mettre le nombre $-2 + 2i\sqrt{3}$ sous la forme exponentielle.
 - b) Résoudre alors dans $\mathbb C$, l'équation $(E_{ heta})$.

2) Le plan est rapporté à un repère orthonormé direct $(\mathbf{0}, \vec{\mathbf{u}}, \vec{\mathbf{v}})$.

On désigne par M_1 et M_2

les points d'affixes respectives $z_1 = 2e^{i\theta} - 2e^{i\frac{\pi}{3}}$ et $z_2 = 2e^{i\theta} + 2e^{i\frac{\pi}{3}}$

- a) Montrer que $z_1 = 4i \sin\left(\frac{\theta}{2} \frac{\pi}{6}\right) e^{i\left(\frac{\theta}{2} + \frac{\pi}{6}\right)}$ et $z_2 = 4\cos\left(\frac{\theta}{2} \frac{\pi}{6}\right) e^{i\left(\frac{\theta}{2} + \frac{\pi}{6}\right)}$
- b) Déterminer, suivant les valeurs de θ dans $[-\pi, \pi]$, le module et un argument de chacun des nombres complexes z_1 et z_2
- 3) a) Montrer que pour tout $\in [-\pi, \pi] \setminus \left\{\frac{-2\pi}{3}, \frac{\pi}{3}\right\}$, le triangle OM_1M_2 est rectangle en O.
 - b) Déterminer les valeurs de heta pour que le triangle heta soit isocèle.

Exercice 9

- 1) a) Résoudre, dans C, l'équation : $z^2 i(2 e^{i\theta})z 1 + e^{i\theta} = 0$ avec $\theta \in \left[\frac{\pi}{2}, \pi\right]$
 - b) Ecrire sous forme exponentielle les solutions de cette équation.
- 2) Soient les points (1), B(i) et le cercle (C) de centre B et de rayon 1 et M(z) un point de (C). Faire une figure que l'on complètera dans la suite de l'exercice
- 3) Soit l'application $f: P\setminus \{B\} \to P\setminus \{A\}$ qui à tout M(z) associe le point M'(z') telle que $z' = \frac{\overline{z}-i}{\overline{z}+i}$
 - a) Soit N le point d'affixe $z_N = i ie^{i\theta}$

Déterminer et Construire l'ensemble des points N lorsque θ varie dans $\frac{\pi}{2}$, π

- b) Montrer que f n'admet aucun point invariant.
- 4) a) Vérifier que pour tout $z \neq i$, on a : $z' 1 = \frac{-2i}{\overline{z}+i}$
 - b) En déduire que $\forall M \in P \setminus \{B\}$, on a AM'. BM = 2 et $(\overrightarrow{BM}, \overrightarrow{AM'}) \equiv -\frac{\pi}{2}[2\pi]$
 - d) Construire le point M' image du point M par f.

Exercice 10

Soit θ un réel de l'intervalle]0 , π [et soit (E_{θ}) : $z^2-(1+i)\big(i+e^{i\theta}\big)z+i\big(i+e^{i\theta}\big)^2$

- 1) Résoudre dans \mathbb{C} l'équation (E_{θ}) .
- 2) Soient les points M_1 et M_2 d'affixes respectives :

$$z_1 = \cos \theta + i(1 + \sin \theta)$$
 et $z_2 = -1 - \sin \theta + i\cos \theta$

- a) Ecrire z_1 sous la forme exponentielle.
- b) En déduire l'écriture exponentielle de z_2 .
- c) Montrer que le triangle OM_1M_2 est isocèle rectangle en O.
- d) Déterminer l'affixe du point M pour que le quadrilatère OM_1MM_2 soit un carré.
- 3) Soit A le point d'affixe -1 + i
 - a) Montrer que : $\frac{aff(\overline{AM_1})}{aff(\overline{AM_2})} = -cot \frac{\theta}{2}$

- b) En déduire que les points M_1 et M_2 sont alignés.
- 4) Déterminer et construire l'ensemble des points M_1 d'affixe z_1 lorsque θ décrit]0 , π [.

Soit
$$f(z) = z^2 - 9\left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)z - 81\left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)$$
 avec $z \in C$

- 1) Calculer f(9). En déduire les solutions de l'équation f(z) = 0
- 2) a) Résoudre dans C l'équation $(E): z^8 9\left(\frac{1}{2} i\frac{\sqrt{3}}{2}\right)z^4 81\left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right) = 0$
 - b) Ecrire les solutions sous la formes exponentielle
- 3) Parmi les solutions de l'équation (E) on trouve les deux solutions

$$a = i\sqrt{3}$$
 et $b = \sqrt{3}\left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)$

Soit
$$\lambda = r(\cos\theta + i\sin\theta)$$
 avec $\theta \in]0$, $\pi[$ et $r > 0$

- a) Déterminer r et θ pour que les 3 nombres complexes a, λ et b soient, dans cet ordre, les 3 termes consécutifs d'une suite géométrique (U_n) , $n \in IN$
 - b) Déterminer alors la raison q de cette suite
 - c) Déterminer le module et un argument de U_n .
 - d) Pour quelles valeurs de U_n est un réel?
- 4) Soit M(z) avec $z \in C$, Déterminer l'ensemble des points M tel que $bz^2 a|z|^2 = 0$.

Exercice 12

Pour tout réel $\theta \in]-\pi$, $\pi]$, on considère la fonction f_{θ} définie sur $\mathbb{C}\setminus\{e^{i\theta}\}$ par : $f_{\theta}(z)=\frac{1+ze^{i\theta}}{e^{i\theta}-z}$

- 1) Vérifier que si $\theta \in \left\{-\frac{\pi}{2}, \frac{\pi}{2}\right\}$ alors $e^{i\theta}$ est invariant par f_{θ} .
- 2) On pose $\theta = 0$.
 - a) Montrer que pour tout nombre complexe z et z' de $\mathbb{C}\backslash\{-1$, $1\}$

$$f_0(z) = z'$$
 si et seulement $z = -f_0(-z')$

- b) Montrer que pour tout $lpha
 eq 2k\pi$, $k \in \mathbb{Z}$ et $lpha
 eq \pi + 2k\pi$, $k \in \mathbb{Z}$ on $a: f_0(e^{ilpha}) = rac{i}{\tan(rac{lpha}{2})}$
- c) Déterminer les racines carrées de $\frac{\sqrt{2}}{2}(1+i)$.
- d) Utiliser les questions a) b) et c) pour résoudre dans $\mathbb C$ l'équation :

$$(1+z)^2 = \frac{\sqrt{2}}{2}(1+i)(1-z)^2.$$

- 3) On suppose que $\theta \in]-\pi$, $\pi]\setminus \left\{-\frac{\pi}{2}, \frac{\pi}{2}\right\}$. on désigne par A, B, M et M' les points d'affixes respectives $e^{i\theta}$, $-e^{-i\theta}$, z et $z'=f_{\theta}(z)$
 - a) Montrer que tout $M \neq A$ et $M \neq B$ on a: $(\overrightarrow{u}, \overrightarrow{OM'}) \equiv \theta + \pi + (\overrightarrow{MA}, \overrightarrow{MB})$ [2 π]
- b) Pour $=\frac{\pi}{4}$, déterminer et construire l'ensemble Γ des points M lorsque M' décrit la demi-droite $(\mathbf{v}=-\mathbf{x})$

Soit m un nombre complexe non nul tel que : |m|=r>0 et $Arg(m)\equiv \frac{\pi}{6}$ [2 π]. On désigne par M et A les points d'affixes respectifs m et 1.

- 1) Donner la forme exponentielle de $\frac{\sqrt{3}+i}{2}$.
- 2) Déterminer r pour que AM = 1.
- 3) Soit l'équation $(E_m): mz^2 (1+i)z + \frac{\sqrt{3}+i}{2\overline{m}} = 0$. On désigne par M_1 et M_2 les images respectifs des nombres complexes z_1 et z_2 solutions de l'équation (E_m) .
 - a) Sans résoudre l'équation (E_m) , montrer que $Arg(z_1+z_2)\equiv \frac{\pi}{12}$ $[2\pi]$.
 - **b)** Montrer que $m\left(\frac{\sqrt{3}+i}{2\overline{m}}\right)=i$
 - c) Résoudre alors dans \mathbb{C} l'équation (E_m) .
 - d) Ecrire z_1 et z_2 sous forme exponentielle.
- 4) Montrer que le triangle OM_1M_2 est rectangle et isocèle en O.
- 5) Dans la suite de l'exercice M est un point du cercle trigonométrique.
 - a) Soit $\theta \in \mathbb{R} \setminus \{k\pi\}$; $k \in \mathbb{Z}$. Montrer que $\frac{i-z}{i+z} = e^{i\theta} \iff z = \tan\left(\frac{\theta}{2}\right)$.
 - b) Résoudre dans \mathbb{C} l'équation (E'_m) $m\left(\frac{i-z}{i+z}\right)^2-(1+i)\left(\frac{i-z}{i+z}\right)+\frac{\sqrt{3}+i}{2\overline{m}}=0$.

Exercice 14

On considère dans \mathbb{C} l'équation : (E): $z^2-\left(e^{2i\theta}+2e^{i\theta}\right)z+e^{3i\theta}+e^{2i\theta}=0\; ; \theta\in[0,\pi[$

On désigne par z_1 et z_2 les solutions de (E)

- 1) Sans calculer Δ
 - a) Montrer que z_1 et z_2 sont non nulles.
 - b) Montrer que $\frac{1}{z_1} + \frac{1}{z_2} = \frac{e^{i\theta} + 2}{e^{2i\theta} + e^{i\theta}}$
 - c) Déterminer θ pour que $\frac{1}{z_1} + \frac{1}{z_2} = \frac{3}{2}$
- 2) Résoudre dans \mathbb{C} l'équation (E).
- 3) On considère les points I, M, M' et M'' d'affixes respectives :

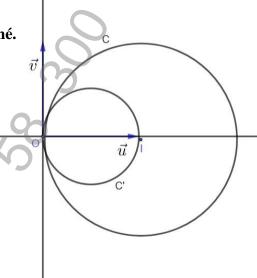
$$z_I = 1$$
 ; $z = e^{i\theta}$; $z' = 1 - e^{2i\theta}$ et $z'' = e^{2i\theta} + e^{i\theta}$; $\theta \in]0,\pi[$

- a) Mettre z' et z'' sous forme exponentielle.
- b) Montrer que les droites (OM) et (OM') sont perpendiculaires.
- 4) On a tracé ci-dessous le cercle (C) de centre I et de rayon 1 et (C') le cercle de diamètre [OI].

- a) Vérifier que le point M' appartient au cercle (C).
- b) Déterminer l'affixe du point K le milieu de [M'M'']

Vérifier que K appartient au cercle (C')

- c) Montrer que [OK) est la bissectrice de $(\overline{OI}, \overline{OM})$.
- d) Construire les points M' et M'' pour le point M donné.



Exercice 15

On considère les points A et B d'affixes respectives a et 1 où $a \in \mathbb{C} \setminus \{1\}$. Soit f l'application de $P \setminus \{B\}$ dans P qui à tout point M d'affixe z, associe le point M' d'affixe z' telle que : $z' = \frac{z-a}{z-1}$

1) Montrer que les affixes des points invariants par f sont les solutions de l'équation :

$$(E): z^2-2z+a=0$$

- 2) a) On suppose que $a = 1 + e^{2i\theta}$ où $\in \left] \frac{\pi}{2} \right]$. Résoudre l'équation (E)
 - b) Mettre sous forme trigonométrique chacune des solutions de (E).
- 3) Dans cette question on suppose que a = -1

Soit M un point de $P \setminus \{B\}$ d'affixe z et M' d'affixe z' = f(z)

a) Montrer que
$$(\overrightarrow{u},\overrightarrow{BM}) + (\overrightarrow{u},\overrightarrow{BM'}) \equiv 0 \ [2\pi]$$

En déduire que la demi-droite [BA) est une bissectrice de l'angle $(\overline{MB}, \overline{BM'})$

- b) Montrer que z' est imaginaire pur si et seulement si |z| = 1
- c) En déduire la construction du point M' image d'un point M du cercle trigonométrique privé du point B.

<u>Exercice 16</u>

- 1) a) Résoudre dans \mathbb{C} , l'équation (E): $z^2 + (4+3i)z + 4 4i = 0$.
 - b) Déterminer les racines cinquièmes de i et (-4-4i).
 - c) Résoudre alors dans \mathbb{C} , l'équation (E_1) : $z^{10} + (4+3i)z^5 + 4 4i = 0$
 - d) Résoudre dans \mathbb{C} , l'équation :

$$(E_2): z^2 + (4+3i)e^{i\alpha}z + (4-4i)e^{2i\alpha} = 0; \alpha \in]-\pi,\pi]$$

- 2) Soit l'équation (E'): $z^3 + (5+3i)z^2 + (8-i)z + 4 4i = 0$.
 - a) Montrer que l'équation (E') admet une solution réelle que l'on déterminera.
 - b) Résoudre alors dans \mathbb{C} , l'équation (E').
- 3) a) Montrer que pour tout $\in]0$, $\pi[$, on a: $\frac{z+i}{z-i} = e^{i\theta}$ si et seulement si $z = \cot(\frac{\theta}{2})$.
 - b) Résoudre alors dans \mathbb{C} , l'équation : $(z^2 + 1)^5 = i(z i)^{10}$.

1) On considère dans \mathbb{C} l'équation $(E): z^2 - (1+i)z - i = 0$

Résoudre l'équation (E). On note z_1 et z_2 les solutions de (E).

2) Dans le plan rapporté à un repère orthonormé direct $(0, \vec{u}, \vec{v})$.

On désigne par A, B, M_1 et M_2 les points d'affixes respectives : 1, i, z_1 et z_2 .

Soit z un nombre complexe distinct de , i , z_1 et z_2 .

On note M et M' les points d'affixes respectives z et z' = $\frac{z+i}{z-i}$

Justifier que les points M et M'sont distincts.

Dans la suite de l'exercice on prend $z = i + 2e^{i\theta}$, où θ est un réel.

- 3) a) Montrer que M décrit le cercle Γ de centre B et de rayon 2.
 - **b)** Montrer que $z' = 1 + ie^{-i\theta}$
 - c) Montrer que AM' = 1 et que $(\vec{u}, \overrightarrow{AM'}) \equiv \frac{\pi}{2} \theta [2\pi]$.
 - d) Déterminer l'ensembles des points M' lorsque le point M décrit le cercle Γ .
- 4) Soit P le milieu du segment [MM'] et z_P son affixe.

On désigne par Q le point d'affixe $z_Q = e^{i\frac{\pi}{4}}z_P$

- a) Vérifier que : $z_P = \frac{1+i+2e^{i\theta}+ie^{-i\theta}}{2}$
- b) En déduire que $z_Q = \frac{i\sqrt{2} + 2e^{i\left(\theta + \frac{\pi}{4}\right)} e^{-i\left(\frac{\pi}{4} + \theta\right)}}{2}$
- c) Montrer alors que $z_Q = \frac{1}{2}\cos\left(\theta + \frac{\pi}{4}\right) + i\left(\frac{\sqrt{2}}{2} + \frac{6}{2}\sin\left(\theta + \frac{\pi}{4}\right)\right)$.
- 5) Montrer que lorsque le point M varie sur le cercle Γ , alors les coordonnées du point Q(x, y) vérifient

l'équation suivante : $4x^2 + \frac{9}{4}(y - \frac{\sqrt{2}}{2})^2 = 1$

Exercice 18

Soit dans \mathbb{C} l'équation (E): $z^3 + \left(1 - 2\cos\frac{\pi}{12}e^{i\frac{\pi}{4}}\right)z^2 - \left(2\cos\frac{\pi}{12}e^{i\frac{\pi}{4}} - i\right)z + i = 0$

- 1) a) Vérifier que $\left(2 \sin \frac{\pi}{12} e^{-i\frac{\pi}{4}}\right)^2 = -4i \sin^2 \frac{\pi}{12}$
- **b)** Résoudre dans \mathbb{C} l'équation (E'): $z^2 2\cos\frac{\pi}{12}e^{i\frac{\pi}{4}}z + i = 0$

- c) Ecrire les solutions de (E') sous forme exponentielle.
- 2) a) Vérifier que $z_0 = -1$ est une racine de (E).
 - **b)** Montrer que :

$$z^{3} + \left(1 - 2\cos\frac{\pi}{12}e^{i\frac{\pi}{4}}\right)z^{2} - \left(2\cos\frac{\pi}{12}e^{i\frac{\pi}{4}} - i\right)z + i = (z+1)\left(z^{2} - 2\cos\frac{\pi}{12}e^{i\frac{\pi}{4}}z + i\right)$$

- 3) Soit A , B et C les points d'affixes respectives $a=\frac{\sqrt{3}+i}{2}$; b=-1 et $c=\frac{\sqrt{6}-\sqrt{2}}{2}e^{i\frac{7\pi}{12}}$

On désigne par H le milieu de [AB] d'affixe z_H

- a) Montrer que $z_H = \sin \frac{\pi}{12} e^{i\frac{7\pi}{12}}$ en déduire que $\sin \frac{\pi}{12} = \frac{\sqrt{6}-\sqrt{2}}{4}$
- **b)** Montrer que H est le milieu de [OC].
- c) Montrer alors que OACB est un losange.
- 4) Ci-dessous on a placé les points A et B sur le cercle (C) de centre O et de rayon 1.
 - c) Construire le cercle (C') de centre O et de rayon $\frac{\sqrt{6}-\sqrt{2}}{2}$

