Devoir de contrôle n 1

Exercice n 1 (3 points)

Pour chacune des questions suivantes , une seule réponse est correcte.La relever .

1)
$$\lim_{x \to +\infty} (8x^2 + 4) \cos(\frac{1}{2x^2 + 1}) - 8x^2 - 4$$
 est égal à : **a** $\frac{1}{2}$

2) La forme algébrique de
$$\left(\frac{\sqrt{3}}{2} - \frac{1}{2}i\right)^{2028}$$
 est : **a** 1

b
$$-\frac{\sqrt{3}}{2} - \frac{\sqrt{1}}{2}i$$
 c

3) Si
$$f(x) = x^3 - \frac{1}{16}x + 1$$
 et $g(x) = \frac{x-2}{x^2-4}$ alors $\lim_{x \to 2^+} f \circ g(x) = \frac{1}{x^2-4}$

$$\mathbf{a}$$
 $-\infty$

$$\mathbf{b}$$
 $+\infty$

Exercice n 2 (7 points)

1) Le plan complexe est rapporté à un repère orthonormé $(O, \overrightarrow{u}, \overrightarrow{v})$. On désigne par Γ le cercle de centre O et de rayon 1 et A est le point d'affixe $z_A = -1$ et les points B et C d'affixes respectives : $z_B = e^{i\frac{3\pi}{4}}$ et $z_C = -z_B$.

Écrire z_B sous forme algébrique. Placer le point A et construire les points B et C.

- 2) Soient les points M_1 et M_2 d'affixes respectives : $Z_1 = \left(\frac{-2-\sqrt{2}}{2}\right) + i\frac{\sqrt{2}}{2}$ et $Z_2 = \left(\frac{\sqrt{2}-2}{2}\right) i\frac{\sqrt{2}}{2}$.
 - a) Vérifier que A est le milieu du segment $[M_1M_2]$.
 - **b)** Prouver que le quadrilatère OAM_1B est un losange puis construire les points M_1 et M_2 .
 - **c)** Calculer l'aire du losange OAM_1B .
- 3) Montrer que $(\vec{u}, O\vec{M}_1) = \frac{7\pi}{8} + 2k\pi, k \in \mathbb{Z}$. En déduire la valeur exacte de $\cos\left(\frac{7\pi}{8}\right)$.
- **4)** Soit M un point du plan d'affixe $z_M = e^{i\theta}$ où $\theta \in \left] -\frac{\pi}{4}, \frac{3\pi}{4} \right[$.
 - a) Vérifier que $M \in \Gamma$, en déduire que MBC est un triangle rectangle en M.
 - **b)** Soit S l'aire du triangle MBC. Montrer que $S = \frac{1}{2} |e^{i2\theta} + e^{i\frac{\pi}{2}}|$.
- **5)** a) Vérifier que $e^{i(\theta + \frac{\pi}{4})} [e^{i(\theta \frac{\pi}{4})} + e^{-i(\theta \frac{\pi}{4})}] = e^{i2\theta} + e^{i\frac{\pi}{2}}$.
 - **b)** En déduire que $S = \cos(\theta \frac{\pi}{4})$. Déterminer la valeur de θ pour laquelle S est maximale.
 - c) Déterminer les valeurs de θ pour que l'aire du triangle MBC soit le double de celle de ABM_1 .

Exercice n 3 (5 points)

Soit f la fonction définie sur \mathbb{R}^* par : $f(x) = \begin{cases} \frac{\sqrt{x^2 + 9} - 3}{x} & \text{si } x < 0 \\ f(x) = \frac{x^2 \sin(2/x)}{x + 1} & \text{si } x > 0 \end{cases}$

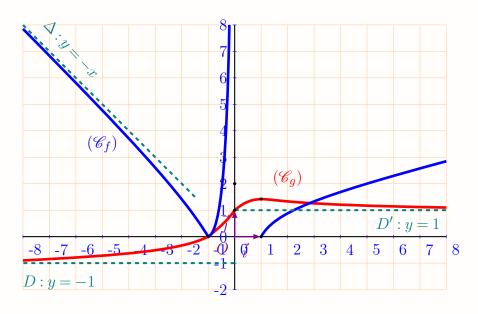
- 1) a) Montrer que pour tout réel x > 0, on a : $\frac{-x^2}{x+1} \le f(x) \le \frac{x^2}{x+1}$. En déduire $\lim_{x \to 0^+} f(x)$.
 - **b)** f est-elle prolongeable par continuité en 0?.
- **2) a)** Montrer que f est continue sur $]0, +\infty[$.

- **b)** Montrer que $\lim_{x \to +\infty} f(x) = 2$. Interpréter le résultat graphiquement.
- 3) Montrer que l'équation f(x) = 0 admet au moins une solution dans $\left[\frac{4}{3\pi}, \frac{4}{\pi}\right]$.
- **4)** Soit g la fonction définie sur $]1, +\infty[$ par $g(x) = f\left(\frac{1}{x-1}\right)$.
 - a) Calculer $\lim_{x\to 1^+} g(x)$ et $\lim_{x\to +\infty} g(x)$.
 - **b)** Montrer que g est continue sur $]1, +\infty[$.

Exercice n 4 (5 points)

Dans le graphique ci-dessous on a représenté dans le plan muni d'un repère orthonormé $(O,\overrightarrow{OI},\overrightarrow{OJ})$ en gras la courbe \mathscr{C}_f d'une fonction f continue sur $]-\infty,0[\cup[1,+\infty[$. En rouge on a représenté la courbe \mathscr{C}_g d'une fonction g continue sur \mathbb{R} . On sait que la droite $\Delta: y=-x$ est une asymptote à \mathscr{C}_f au voisinage de $-\infty$ et que \mathscr{C}_f admet une branche parabolique de direction celle de (O,\overrightarrow{i}) au voisinage de $+\infty$. On sait aussi que (O,\overrightarrow{j}) est une asymptote à \mathscr{C}_f .

 \mathscr{C}_g admet deux asymptotes les droites d'équations respectives D: y = -1 et D': y = 1. On donne $g(1) = \sqrt{2}$.



- 1) Par lecture graphique

 - **b)** Déterminer $\lim_{x\to 0^-} x f(\frac{1}{x})$, $\lim_{x\to +\infty} \frac{-2}{1-g(x)}$, $\lim_{x\to -\infty} f(g(x))$ et $\lim_{x\to +\infty} f(g(x))$.
 - c) Dresser le tableau de variation de f. Déterminer f([-1,0]) et $g(\mathbb{R})$.
- **2)** Soit h la fonction définie par $h(x) = f \circ g(x)$. On note Γ la courbe de h.
 - a) Déterminer l'ensemble de définition de h.
 - **b)** Étudier les branches infinies de Γ. Résoudre l'équation h(x) = 0.
- 3) Soit k la fonction définie par : $k(x) = g \circ f(x)$.
 - a) Déterminer l'ensemble de définition de k.
 - **b)** Déterminer $k(]-\infty,0[)$.