Devoir de contrôle n°1

4T₁₊₂₊₃ (Durée : 120 mn) Letaeif Adel + Med Taher Amloug +Saidi Sola

Exercice Nº:2 (6 pts)

On considère la suite (U_n) définie sur \square par $\begin{cases} U_0 = \frac{1}{2} \\ U_{n+1} = \frac{2U_n}{1 + U_n^2} & \forall \ n \in IN \end{cases}$

- 1) a) Montrer que pour tout $n \in IN$; on a : $\frac{1}{2} \le U_n \le 1$
 - b) Montrer que (U_n) est croissante.
 - c) En déduire que (Un) est convergente et calculer sa limite
 - 3) a- Montrer que pour tout $n \in \square$, $\left|u_{n+1} 1\right| \le \frac{2}{5} \left|u_n 1\right|$.
 - b- En déduire que pour tout $n \in \square$, $\left| u_n 1 \right| \le \frac{1}{2} \left(\frac{2}{5} \right)^n$.
 - c- Retrouver alors $\lim_{n\to +\infty} u_n$.

Pour tout $n \in IN^*$ on pose : $S_n = \sum_{k=1}^n u_k$, $V_n = \frac{S_n}{n}$ et $W_n = \frac{S_n}{\sqrt{n}}$

 $\mbox{Montrer que pour tout entier naturel } \ k, \ \ \mbox{on a:} \ \ 1 - \frac{1}{2} \bigg(\frac{2}{5} \bigg)^k \leq u_k \leq 1 \ \ .$

En déduire que pour tout entier naturel n ,on a : $n - \frac{1}{3} \left(\frac{2}{5}\right)^n \le S_n \le n$

b- Déterminer alors $\underset{n \rightarrow +\infty}{\text{lim}} \, V_n \;\; \text{et} \;\; \underset{n \rightarrow +\infty}{\text{lim}} \, W_n$.

Exercice Nº:2 (7 pts)

- 1) Soit l'équation (E): $z^2 2z + 1 + i = 0$
 - a) Vérifier que $(\sqrt{2} i\sqrt{2})^2 = -4i$
 - b) Résoudre dans C l'équation (E)
- 2) Le plan le plan est rapporté à un repère orthonormé direct $(0, \vec{u}, \vec{v})$ on désigne par (Γ) le cercle de centre O et de rayon 1 et A le pont d'affixes -1
 - a) Construire les points B et C d'affixes respectives $z_B = e^{i\frac{3\pi}{4}}$ et $z_C = -\overline{z_B}$
 - b) Ecrire Z_B sous forme algébrique.

- 3) Soit M_1 et M_2 les points d'affixes respectives $z_1 = \left(\frac{-2-\sqrt{2}}{2}\right) + i\frac{\sqrt{2}}{2}$ et $z_2 = \left(\frac{2-\sqrt{2}}{2}\right) i\frac{\sqrt{2}}{2}$
 - a) Vérifier que A est le milieu du segment $\left[M_1 M_2 \right]$
 - b) Montrer que le quadrilatère OAM,B est un losange, puis construire les points M, et M,
- 4) Soit M le point d'affixe $z = e^{i\theta}$ avec $\theta \in \left[-\frac{\pi}{4}, \frac{\pi}{4} \right]$
 - a) Vérifier $M \in (\Gamma)$ en déduire que MBC est un triangle rectangle en M.
 - b) Soit S l'aire du triangle MBC. Montrer que $S = \frac{1}{2} \left| e^{i2\theta} + e^{i\frac{\pi}{2}} \right|$
- 5) a) Vérifier que $e^{i(\theta+\frac{\pi}{4})}\left(e^{i(\theta-\frac{\pi}{4})}+e^{-i(\theta-\frac{\pi}{4})}\right)=e^{i2\theta}+e^{i\frac{\pi}{2}}$
 - b) En déduire que $s = cos \left(\theta \frac{\pi}{4}\right)$ '
 - c) Déterminer la valeur de θ pour laquelle S est maximale.

EXERCICE N°3: (7 points)

Sur la figure ci-dessous est tracée la courbe représentative notée (*Cf*) dans un repère orthonormé $(\mathcal{O}, \vec{i}, \vec{j})$ d'une fonction f définie sur $(\mathcal{O}, \vec{i}, \vec{j})$ d'une fonction f définie sur $(\mathcal{O}, \vec{i}, \vec{j})$ d'une fonction f definie sur $(\mathcal{O}, \vec{i}, \vec{i})$ d'une fonction (\mathcal{O}, \vec{i}) d'une fonction

- La droite D d'équation y = -2x-1 est asymptote à la courbe (Cf) en (-∞).
- La droite d'équation x = -1 est asymptote à la courbe (*Cf*).
- (Cf) admet une branche parabolique de direction celle de la droite d'équation $y = \frac{1}{2}x$ au voisinage de -∞

_ les points
$$A\left(-\frac{3}{2},0\right)$$
, $B\left(-\frac{1}{2},0\right)$, $C\left(0,1\right)$ et $D\left(1,2\right)$ sont des points de (Cf)

À partir du graphique:

- 1) Déterminer
 - a) $\lim_{x \to -\infty} f(x)$, $\lim_{x \to -\infty} \frac{f(x)}{x}$, $\lim_{x \to -\infty} f(x) + 2x$
 - b) $\lim_{x\to +\infty} f(x)$, $\lim_{x\to -1^-} f(x)$
- 2) Soit la fonction g définie sur \Box par $(x) = \sqrt{x^2 + 3} + x 4$. On désigne par (Cg) sa courbe dans un repère orthonormé $(\vec{O}, \vec{i}, \vec{j})$.
- a) Montrer que la droite d'équation :y= 4 est une asymptote à (Cg) au voisinage de (- ∞).
- b) Montrer que la droite d'équation :y= 2x- 4 est une asymptote à (Cg) au voisinage de (+∞).
- **3) a)** Montrer que la fonction $f \circ g$ est définie sur $\Box -\{1\}$.
- b) la fonction est -elle prolongeable par continuité en 1 ?
- 4) Soit la fonction g définie sur \Box par $f(x) = \begin{cases} x+1 \sin\left(\frac{\pi}{x+1}\right) 3 & \text{si } x > -1 \\ g(x) & \text{si } x \leq -1 \end{cases}$
- a) Montrer que pour tout $x \succ -1$, on a $-x 4 \le h/(x) \le x 2$.
- b) En déduire que h est continue en -1.
- c) Calculer $\lim_{x\to +\infty} h(x)$
- 5) a) Montrer que l'équation /(x) = -2 admet au moins une solution α dans [0,1].
- b) Montrer que $tg\left(\frac{\pi}{\alpha+1}\right) = \frac{1}{\sqrt{\alpha^2 + 2\alpha}}$



