Lycée pilote Monastir
Epreuve: Mathématiques

NIVEAU :2ème année sciences

PROFS:, M^r Mansour Mourad- M^r Zrafi Karim

Devoir de contrôle n°1

Date: 18/10/2025

Nom&Prénom.....

Exercice n°1:(6 points)

1) Résoudre dans IR les équations suivantes :

$$(E_1): -2025x^2 - 2024x + 1 = 0$$

$$(E_2): x^2 + 3x - 10 = 0$$

$$(E_3): \sqrt{-2x+5} = x-1$$

- 2) a) Factoriser le trinôme $T(x) = x^2 + 3x 10$.
 - b) Résoudre alors dans IR l'équation : (E_4) : $\sqrt{-x^2+11} = x^2+1$.

Exercice n°2:(6 points)

On considère l'équation (E): $(\sqrt{2}+1)x^2+2x-2=0$.

1) Sans calculer le discriminant de l'équation (E), montrer que (E) admet deux racines distinctes X' et X'' (On suppose que X' < X'').

2) Soit
$$A = (2x'+1)(2x''+1)$$
 et $B = \frac{x''\sqrt{2}}{x'} + \frac{x'\sqrt{2}}{x''}$

Sans calculer x' et x'' :

- a) Vérifier que $x' + x'' = x'x'' = 2 2\sqrt{2}$
- b) Montrer que $A = 13-12\sqrt{2}$ et que B = -4.
- c) Montrer que : $x' < -\frac{1}{2} < x''$.
- 3) a) Vérifier que $(-\sqrt{2})$ est une solution de l'équation (E) .
 - b) En déduire l'autre solution de l'équation (E) .

Exercice n°3:(8 points)

On donne dans la figure ci-dessous un triangle ABC rectangle en A tel que AB = 2 AC . Soit J le milieu du segment [AC] .

Soit I et L les points définis par $3\overrightarrow{AI} + \overrightarrow{BI} = \overrightarrow{0}$ et $\overrightarrow{AL} = -\frac{1}{4}\overrightarrow{AB} + \overrightarrow{AC}$.

- 1) a) Vérifier que $\overrightarrow{AI} = \frac{1}{4}\overrightarrow{AB}$ et que J est le milieu du segment [IL].
 - b) En déduire la nature du quadrilatère I ALC .
 - c) Placer sur la figure ci-dessous les points I et L.
 - 2) a) Montrer que $\mathcal{R} = (A, \overrightarrow{AI}, \overrightarrow{AJ})$ est un repère orthonormé du plan.
 - b) Déterminer les coordonnées des points B, C et L.
- 3) Soit x un réel. On donne le point $M(-x, \frac{1}{2}x+2)$ et on note \mathscr{C} le cercle de diamètre [AB].
 - a) Montrer que pour tout réel x, les points M, B et C sont alignés.
 - b) Montrer que M appartient au cercle \mathscr{C} si et seulement si $5x^2 + 24x + 16 = 0$.
 - c) En déduire que M appartient au cercle \mathscr{C} si et seulement si M=B ou $M=K(\frac{4}{5},\frac{8}{5})$.
 - d) Construire alors sur la figure ci-dessous le point K.
- 4) Déterminer les coordonnées du point L selon le repère $\mathscr{R}' = (I, \overrightarrow{BA}, \overrightarrow{BC})$.

Figure

