Devoir De Contrôle N°1# ~Durée 60 minutes~

M. KHEMIRI Fawzi
Classe 2^{ième} Sc 4

Exercice 1 (5 points)

Répondre par vrai ou faux à chacune des assertions suivantes sans justification :

- 1) L'équation $\sqrt{1-x} = x-1$ n'admet aucune solution dans \mathbb{R} .
- 2) L'ensemble des solutions de l'inéquation $\frac{1}{x} < x$ est $]1,+\infty[$.
- 3) Le plan est muni d'un repère orthonormé (O, \vec{i}, \vec{j}) . On donne les points A(-1,1) et B(3,2).
 - a) Pour tout réel α , le point $M(4\alpha 5, \alpha)$ appartient à (AB).
 - b) Le vecteur \vec{j} est de composantes $\begin{pmatrix} -4\\1 \end{pmatrix}$ dans la base $(\vec{i}, \overrightarrow{AB})$.
 - c) $OM = \sqrt{2}$ si et seulement si $\alpha = 1$ ou $\alpha = \frac{23}{17}$.

Exercice 2 (5 points)

1) Résoudre, dans \mathbb{R} , chacune des équations suivantes :

$$(E_1): \frac{2x+1}{\frac{1}{2}-|x|} = 2 ; (E_2): |x+3| = 2x \text{ et } (E_3): \frac{\sqrt{x+2}}{x} = 1.$$

2) Résoudre, dans \mathbb{R} , chacune des inéquations suivantes : $(I_1): \frac{2x}{x-1} \le 1$ et $(I_2): |2x-1| > 2|x|$.

Exercice 3 (4 points)

Soit l'équation (E): $\sqrt{2}x^2 - x - \sqrt{2} = 0$.

- 1) Justifier que (E) admet deux racines distinctes α et β .
- 2) Donner la valeur exacte de chacun des réels $A = \alpha^{25} \beta^{26} + \alpha^{26} \beta^{25}$ et $B = \frac{1}{\alpha^2} + \frac{1}{\beta^2}$.
- 3) a) Vérifier que $\sqrt{2}$ est une racine de (E).
 - b) En déduire l'autre racine.
- 4) Résoudre, dans \mathbb{R} , l'inéquation $(I): \sqrt{2}x^2 x \sqrt{2} \ge 0$.

Exercice 4 (6 points)

- 1) Placer les points A(-2,1); B(2,3); C(-1,-1) et D(-5,-3).
- 2) Montrer que ABCD est un parallélogramme.
- 3) a) Montrer que $(AB) \perp (AC)$.
 - b) En déduire que l'aire de ABCD est égale à 10 unités d'aire.
- 4) a) Déterminer, en justifiant, les coordonnées du vecteur \overrightarrow{AD} dans la base $\mathcal{B} = (\overrightarrow{AB}, \overrightarrow{AC})$.
 - b) Vérifier que $\vec{j} \begin{pmatrix} \frac{1}{10} \\ -\frac{2}{5} \end{pmatrix}_{\mathcal{B}}$.
 - c) Déterminer alors les composantes de \vec{i} dans la base $\mathcal{B} = (\overrightarrow{AB}, \overrightarrow{AC})$.
- 5) Déterminer un vecteur \vec{u} unitaire et colinéaire à \overrightarrow{AC} (On le donnera par ses composantes dans la base (\vec{i}, \vec{j})).