Lycée : **Mohamed Ali** Professeur : **M Fourati**

Devoir de contrôle n°1 Date : 18/10/2025 Classe: 2Sc6 ; Durée : 1 h

Exercice 1 : (6 pts)

1°/ Résoudre dans \mathbb{R} , les équations suivantes: $a/2x^2-x+5=0$

$$a/2x^2-x+5=0$$

$$b / x^2 - \sqrt{5}x - 10 = 0$$

$$c / \frac{x^2 + x}{x + 1} = 2.$$

 $\mathbf{2}^{\mathrm{o}}/\operatorname{\mathit{R\'e}soudre}$ dans $\mathbb R$, l'inéquation suivante:

$$\frac{-4}{x-2} \le 3$$

Exercice 2 : (5 pts)

 1° /Soit l'équation (E): $x^2 + 3\sqrt{5}x - 20 = 0$

a/Sans calculer le discriminant Δ , justifier que l'équation (E) admet deux solutions distincts x' et x''tel que x'. x'' = -20

b/ Vérifier que $x' = \sqrt{5}$ est une solution de l'équation (E).

c/En déduire l'autre solution x'' de l'équation (E).

 $2^{\circ}/On \ donne \ l'équation \ (E'): \frac{1}{x} + 3\sqrt{\frac{5}{x}} - 20 = 0$

a/Déterminer l'ensemble de réels x pour que l'expression $\frac{1}{x} + 3\sqrt{\frac{5}{x}} - 20$ est définie

b/ En déduire d'après la première question l'ensemble des solutions de (E').

Exercice 3 : (9 pts)

On considère $(\vec{\imath}; \vec{\jmath})$ une base orthonormée et les vecteurs $\vec{u} \begin{pmatrix} \frac{1}{3} \\ \frac{2\sqrt{2}}{3} \end{pmatrix}$ et $\vec{v} = \frac{2\sqrt{2}}{3}\vec{\imath} - \frac{1}{3}\vec{\jmath}$

1°/ a- Montrer que \vec{u} et \vec{v} sont orthogonaux.

b-Montrer que $(\overrightarrow{u}; \overrightarrow{v})$ est une base orthonormée

 2° /soit le repère $(0; \overrightarrow{\iota}; \overrightarrow{\jmath})$ et les point $A(\sqrt{2}; 4)$ et $B(\sqrt{2} - 1; 4 - 2\sqrt{2})$

a- Vérifier que les deux vecteurs \overrightarrow{OA} et \overrightarrow{u} sont colinéaires

b- Vérifier que $\overrightarrow{AB} = -3\overrightarrow{u}$

c- Justifier que les points 0; A et B sont alignés.

d- Déterminer la distance AB.

 $3^{\circ}/a$ - Déterminer les composantes du vecteur $\vec{w} = 2\sqrt{2}\vec{u} - \vec{v}$ dans la base $(\vec{\iota}; \vec{\jmath})$.

b-En déduire les composantes du vecteur \overrightarrow{j} dans la base $(\overrightarrow{u}; \overrightarrow{v})$.

Correction devoir de contrôle n°1 (2ème Sc6)2025/26

Exercice 1:

$$\overline{I^{\bullet}/a}) \ 2x^{2} - x + 5 = 0. \ a = 2; b = -1 \ et \ c = 5$$

$$\Delta = b^{2} - 4ac = 1 - 40 = -39 < 0 \ donc \ S_{IR} = \emptyset$$

$$b) \ x^{2} - \sqrt{5}x - 10 = 0;$$

$$a = 1; \ b = -\sqrt{5} \ et \ c = -10$$

$$\Delta = b^{2} - 4ac = \left(-\sqrt{5}\right)^{2} + 40 = 45 > 0 \ donc$$

$$x' = \frac{-b - \sqrt{\Delta}}{2a} \qquad et \qquad x'' = \frac{-b + \sqrt{\Delta}}{2a}$$

$$= \frac{\sqrt{5} - \sqrt{45}}{2} \qquad = \frac{\sqrt{5} + \sqrt{45}}{2}$$

$$= \frac{\sqrt{5} - 3\sqrt{5}}{2} \qquad = \frac{\sqrt{5} + 3\sqrt{5}}{2}$$

$$= -\sqrt{5}$$

$$D'où S_{IR} = \{-\sqrt{5} : 2\sqrt{5}\}$$

$$D'où$$
 $S_{IR} = \{-\sqrt{5}; 2\sqrt{5}\}$

c)
$$\frac{x^2+x}{x+1} = 2$$
; condition : $x + 1 \neq 0$ don $x \neq -1$ pour tout $x \in \mathbb{R} \setminus \{-1\}$; on a :

$$\frac{x^{2}+x}{x+1} = 2 \operatorname{sig} x^{2} + x = 2(x+1)$$

$$\operatorname{sig} x^{2} - x - 2 = 0$$

$$a = 1; b = -1; c = -2$$

$$\operatorname{On} a: a - b + c = 1 + 1 - 2 = 0$$

$$\operatorname{donc} x' = -1 \operatorname{arejet\acute{e}} \operatorname{et} x'' = -\frac{c}{a} = 2$$

$$S_{IR} = \{2\}$$

$$2^{\circ}/\frac{-4}{x-2} \le 3$$
; condition $: x - 2 \ne 0 \ don \ x \ne 2$
pour tout $x \in \mathbb{R} \setminus \{2\}$; on a :

 $\frac{-4}{x-2} \le 3 \operatorname{sig} \frac{-4}{x-2} - 3 \le 0 \operatorname{sig} \frac{-4-3x+6}{x-2} \le 0$

$$sig \frac{-3x+2}{x-2} \le 0. \text{ on } a: -3x+2 = 0 \text{ sig } x = \frac{2}{3}$$

x	- ∞	$\frac{2}{3}$		2	+α	<u>)</u>
-3x + 2	+	ø	_		_	
x-2	_		_	0	+	_
$\frac{3x-2}{x-1}$	_	0	+		_	Aliv
$S_{IR} = \left] -\infty; \frac{2}{3} \right] \cup \left] 2; +\infty \right[$ xercice 2 :					mrati	Av

$$S_{IR} = \left] -\infty; \frac{2}{3} \right] \cup \left] 2; +\infty \right[$$

Exercice 2:

 $1^{\bullet}/a$) on a:a=1; $b=3\sqrt{5}$ et c=-20. Comme a et c de signe contraires alors l'équation (E) admet deux solutions distincts x' et x''tel que

$$x'.x'' = \frac{c}{a} = -20$$

b) (E): $x^2 + 3\sqrt{5}x - 20 = 0$ pour $x' = \sqrt{5}$;

$$(\sqrt{5})^2 + 3\sqrt{5}.\sqrt{5} - 20 = 5 + 15 - 20 = 0$$
 donc

 $x' = \sqrt{5}$ est une solution de (E).

c) On
$$a x' + x'' = \frac{-b}{a} = -3\sqrt{5}$$

 $donc x'' = -3\sqrt{5} - x' = -3\sqrt{5} - \sqrt{5} = -4\sqrt{5}$ $2^{\circ}/a$) l'expression: $\frac{1}{x} + 3\sqrt{\frac{5}{x}} - 20$ a un sens, si et seulement si, $x \neq 0$ et $\frac{5}{x} > 0$ sig $x \in]0; +\infty[$

b)
$$(E')$$
:: $\frac{1}{x} + 3\sqrt{\frac{5}{x}} - 20 = 0$
 $sig: \left(\frac{1}{\sqrt{x}}\right)^2 + 3\sqrt{5}\left(\frac{1}{\sqrt{x}}\right) - 20 = 0$
On pose $t = \left(\frac{1}{\sqrt{x}}\right)$

l'équation sera $t^2 + 3\sqrt{5}t - 20 = 0$ d'après 1°/ $t = \sqrt{5}$ ou $t = -4\sqrt{5}$ par suite: $\frac{1}{\sqrt{x}} = \sqrt{5}$ ou $\frac{1}{\sqrt{x}} = -4\sqrt{5} < 0$ a rejeté $\sqrt{x} = \frac{1}{\sqrt{5}} \quad sig \quad x = \frac{1}{5} \in]0; +\infty[$ $S_{IR} = \left\{\frac{1}{5}\right\}$ $S_{IR} = \left\{\frac{1}{5}\right\}$ alors $S_{IR} = \left\{ \frac{1}{r} \right\}$

Exercice 3:

$$\overline{I^{\bullet}/a}) \, \overrightarrow{u} \left(\frac{\frac{1}{3}}{\frac{2\sqrt{2}}{3}} \right) et \, \overrightarrow{v} \left(\frac{\frac{2\sqrt{2}}{3}}{\frac{-1}{3}} \right) on \, a : \frac{1}{3} \cdot \frac{2\sqrt{2}}{3} + \frac{2\sqrt{2}}{3} \cdot \left(\frac{-1}{3} \right) = 0$$

Donc $\overrightarrow{u} \perp \overrightarrow{v}$

$$b) On \ a: \|\overrightarrow{u}\| = \sqrt{\left(\frac{1}{3}\right)^2 + \left(\frac{2\sqrt{2}}{3}\right)^2} = \sqrt{\frac{1}{9} + \frac{8}{9}} = 1$$

$$et \ \|\overrightarrow{v}\| = \sqrt{\left(\frac{2\sqrt{2}}{3}\right)^2 \left(-\frac{1}{3}\right)^2} = \sqrt{\frac{8}{9} + \frac{1}{9}} = 1$$

$$puis \ que \ \overrightarrow{u} \perp \overrightarrow{v} \ et \ \|\overrightarrow{u}\| = \|\overrightarrow{v}\| \ alors \ (\overrightarrow{u}; \overrightarrow{v})$$

est une base orthonormée

$$\mathbf{2}^{\circ}/a) \ On \ a : \det(\overrightarrow{OA}; \overrightarrow{u}) = \begin{vmatrix} \sqrt{2} & \frac{1}{3} \\ 4 & \frac{2\sqrt{2}}{3} \end{vmatrix}$$
$$= \sqrt{2} \times \left(\frac{2\sqrt{2}}{3}\right) - 4 \times \frac{1}{3} = \frac{4}{5} - \frac{4}{5} = 0$$
$$Donc \ \overrightarrow{OA} \ et \ \overrightarrow{u} \ sont \ colinéaires.$$

b)
$$\overrightarrow{AB} \begin{pmatrix} (\sqrt{2}-1)-\sqrt{2} \\ (4-2\sqrt{2})-4 \end{pmatrix} = \begin{pmatrix} -1 \\ -2\sqrt{2} \end{pmatrix} = -3 \begin{pmatrix} \frac{1}{3} \\ \frac{2\sqrt{2}}{3} \end{pmatrix} = -3\overrightarrow{u}$$

c) $\overrightarrow{AB} = -3\overrightarrow{u}$ donc sont colinéaires et on a \overrightarrow{OA} et \overrightarrow{u} sont colinéaires donc \overrightarrow{OA} et \overrightarrow{AB} sont colinéaires par suite 0; A et B sont alignés

d)
$$\overrightarrow{AB} = -3\overrightarrow{u}$$
 donc $AB = |-3|$. $||\overrightarrow{u}|| = 3 \times 1 = 3$

$$3^{\bullet/a})\overrightarrow{w} = 2\sqrt{2} \begin{pmatrix} \frac{1}{3} \\ \frac{2\sqrt{2}}{3} \end{pmatrix} - \begin{pmatrix} \frac{2\sqrt{2}}{3} \\ \frac{-1}{3} \end{pmatrix} = \begin{pmatrix} \frac{2\sqrt{2} - 2\sqrt{2}}{3} \\ \frac{8+1}{3} \end{pmatrix}$$

 $D'où \overrightarrow{w} \binom{0}{2}$

b)
$$\vec{w} = 2\sqrt{2} \vec{u} - \vec{v} = 3\vec{j}$$
 sig $\vec{j} = \frac{2\sqrt{2}}{3} \vec{u} - \frac{1}{3} \vec{v}$

d'ou $\vec{j} = \frac{2\sqrt{2}}{3} \vec{u} - \frac{1}{3} \vec{v}$