Série dérivabilité 4ème Sc Techniques

Dans tous les exercices le plan est rapporté à un repère orthonormé $(0, \vec{i}, \vec{j})$

Exercice 1

Soit f la fonction définie sur [-1, 1] par $f(x) = x\sqrt{1 - x^2}$

- 1) a) Montrer que f est continue sur [-1, 1].
 - **b)** Montrer que f est dérivable sur]-1, 1[.
- 2) a) La fonction f est-elle dérivable à gauche en 1 ? est-elle dérivable à droite en -1 ? Interpréter graphiquement les résultats obtenus.
- 3) a) Calculer f'(x) pour $x \in]-1$, 1[.
 - b) Etudier le signe de f'(x) et dresser le tableau de variation de f

Exercice 2

On a tracé ci-contre, C_f la courbe représentative

d'une fonction f définie sur $]-\infty$, $-1[\cup [0,7]$

La droite Δ : y = -2x - 7

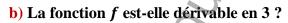
est une asymptote à C_f au voisinage $(-\infty)$.

1) a) Déterminer par lecture graphique

$$\lim_{x\to-\infty} f(x)$$
; $\lim_{x\to-\infty} \frac{x}{f(x)}$ et $\lim_{x\to-\infty} f(x) + 2x$

$$f'(-3); f'(-2); f'(1); \lim_{x\to 0^+} \frac{f(x)}{x}; \lim_{x\to 3^+} \frac{f(x)+3}{x-3}$$

$$\lim_{x\to 3^-} \frac{f(x)+3}{x-3}$$
 et $\lim_{x\to 7^-} \frac{f(x)-5}{x-7}$

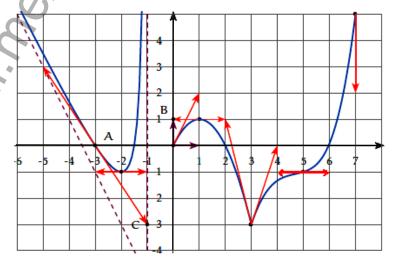


- c) Déterminer le point d'inflexion de C_f et déduire f''(5).
- 2) Ecrire une équation de la tangente à C_f au point d'abscisse (-3).
- 3) Déterminer les intervalles de $\mathbb R$ sur lesquels f est dérivable.
- 4) Dresser le tableau de variation de f.

Exercice 3

Soit f la fonction définie par : $\begin{cases} f(x) = x + \sqrt{x^2 + 1} & \text{si } x \le 0 \\ f(x) = x^3 - 3x + 1 & \text{si } x > 0 \end{cases}$ et soit (C) sa courbe représentative

- 1) Montrer que f est continue sur \mathbb{R} .
- 2) a) Etudier la dérivabilité de f en 0 et interpréter graphiquement le résultat obtenu.
 - b) Justifier que f est dérivable sur chacun des intervalles $]-\infty$, 0[et]0, $+\infty[$ et calculer f'(x)
- 3) a) Déterminer : $\lim_{x \to -\infty} f(x)$ et $\lim_{x \to +\infty} f(x)$
 - b) Montrer que $\forall x \in]-\infty$, 0[on $a: x+\sqrt{x^2+1}>0$ et déduire le signe de f'(x) sur $]-\infty$, 0[
 - c) dresser le tableau de variation de f.



- A) Soit f la fonction définie sur]0, $+\infty$ [par $f(x) = \frac{x+2}{x}$ et soit (C) sa courbe représentative.
- 1) a) Etudier les variations de f.
 - **b)** Déterminer l'image de l'intervalle]0, $+\infty[$ par f
 - c) Soit g la fonction définie sur]0, $+\infty[$ par g(x) = f(x) x
 - c) Montrer que l'équation g(x) = 0 admet une unique solution α et que $\alpha = 2$
- 2) a) Montrer que $\forall x \in [2, +\infty[$ on a: $|f'(x)| \leq \frac{1}{2}$
 - b) En déduire que $\forall x \in [2, +\infty[$ on a : $|f(x) 2| \le \frac{1}{2}|x 2|$

<u>Exercice 5</u>

Soit f la fonction définie par : $\begin{cases} f(x) = \sqrt{x^2 - 3x} & \text{si } x \le 0 \\ f(x) = \frac{3}{2}x^2 + \sin(x^2) & \text{si } x > 0 \end{cases}$ et soit (C) sa courbe représentative.

- 1) Etudier la continuité de f en 0.
- 2) Montrer que f est continue sur $]-\infty$, 0[.
- 3) On pose $\forall x > 0$ $U(x) = x^2$ et $V(x) = \sin(x^2)$
 - a) Ecrire V sous la forme d'une fonction composée.
 - b) En déduire que f est continue sur $]0, +\infty[$.
- 4) a) Calculer $\lim_{x \to -\infty} f(x)$
 - b) Calculer $\lim_{x \to -\infty} \frac{f(x)}{x}$ et $\lim_{x \to -\infty} f(x) + x$
 - c) En déduire que la droite d'équation $y = -x + \frac{3}{2}$ est une asymptote oblique à (C) au voisinage de $-\infty$
- 5) Montrer que $\forall x > 0$ on a : $f(x) \ge \frac{3}{2}x^2 1$ et en déduire $\lim_{x \to +\infty} f(x)$
- $\mathbf{6}$) Etudier la dérivabilité de f à gauche et à droite en $\mathbf{0}$ et interpréter le résultat graphiquement.
- 7) a) Montrer que f est dérivable sur $]-\infty$, 0[et calculer f'(x).
 - b) Montrer que $\forall x > 0$ on a : $f'(x) = 3x + 2x \cos(x^2)$.
- 8) Dresser le tableau de variation de f

Exercice 6

- 1) Soit la fonction g définie sur \mathbb{R} par $g(x) = 2x^3 3x^2 1$
 - a) Dresser le tableau de variation de g
 - b) Montrer que l'équation g(x)=0 admet dans $\mathbb R$ une unique solution $lpha\in\left]rac{3}{2}\right.$, $2\Big[$
 - c) Déterminer le signe de g(x) sur \mathbb{R}
- 2) Soit la fonction f définie sur]-1, $+\infty[$ par $f(x) = \frac{1-x}{x^3+1}$ et soit (C) sa courbe représentative.
 - a) Montrer que pour tout $x \in]-1$, $+\infty[$ on a: $f'(x) = \frac{g(x)}{(x^3+1)^2}$
 - b) Dresser le tableau de variation de f

c) Etudier les branches infinies de (C)

Exercice 7

Soit f la fonction définie sur $]-\infty$, 1] par $f(x)=-\sqrt{1-x}$ et soit (C) sa courbe représentative.

- 1) a) Etudier la dérivabilité de f à gauche en 1 et interpréter le résultat graphiquement.
 - b) Montrer que f est dérivable sur $]-\infty$, 1[.
 - c) Dresser le tableau de variation de f et tracer (C).
- 2) Soit g la fonction définie sur $]-\infty$, 1] par g(x)=f(x)-x
 - a) Dresser le tableau de variation de g.
 - b) Montrer que l'équation g(x) = 0 admet dans $]-\infty$, 0] une unique solution α .
- 3) a) Montrer que $\forall x \in]-\infty$, 0] on a: $|f'(x)| \leq \frac{1}{2}$
 - **b)** Montrer que $\forall x \in]-\infty$, 0] on a: $|f(x) \alpha| \leq \frac{1}{2}|x \alpha|$

Exercice 8

Soit f la fonction définie par : $\begin{cases} f(x) = x + \sqrt{x^2 + 2x} & \text{si } x \leq 0 \\ f(x) = x + 1 - \cos \sqrt{x} & \text{si } x > 0 \end{cases}$ et soit (C) sa courbe représentative.

- 1) a) Déterminer $\lim_{x\to-\infty} f(x)$
 - b) Montrer que $\forall x \in \mathbb{R}_+^*$ on a : $x \le f(x)$ et en déduire $\lim_{x \to +\infty} f(x)$.
- 2) Justifier que f est continue sur \mathbb{R} .
- 3) a) Etudier la dérivabilité de f à gauche en 0 et interpréter le résultat graphiquement.
 - **b)** Montrer que $\forall x \in \mathbb{R}_+^*$ on a $\frac{f(x)}{x} = 1 + \frac{1 \cos \sqrt{x}}{x}$
 - c) Etudier la dérivabilité de f à droite en 0.
- 4) Montrer que f est dérivable sur chacun des intervalles $]-\infty$, 0[et]0, $+\infty[$ et calculer f'(x).

Exercice 9

Soit f la fonction définie par : $\begin{cases} f(x) = 2x + \frac{1 - \cos(x^2)}{x} & \text{si } x < 0 \\ f(x) = \sqrt{x^2 + 2x} & \text{si } x \ge 0 \end{cases}$ et soit (C) sa courbe représentative.

- 1) a) Montrer que f est continue en 0.
 - b) Montrer que f est continue sur \mathbb{R} .
- 2) a) Calculer $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to +\infty} f(x) x$.
 - b) Montrer que $\forall x \in]-\infty$, 0[on $a: 2 \le \frac{f(x)}{x} \le 2 + \frac{2}{x^2}$ c) Calculer $\lim_{x \to -\infty} f(x)$ et $\lim_{x \to -\infty} \frac{f(x)}{x}$
- 3) a) Etudier la dérivabilité de f à droite en 0 et interpréter le résultat graphiquement.
 - **b)** Etudier la dérivabilité de f à gauche en 0.
- **o)** Montrer que f est dérivable sur chacun des intervalles $]-\infty$, 0[et]0, $+\infty[$ et calculer f'(x).
- 4) Préciser le sens de variation de f sur $[0, +\infty]$.

- 5) Soit la fonction g définie sur $\left]0, \frac{\pi}{2}\right]$ par : $g(x) = \frac{1}{\sin x}$
 - a) Etudier les variations de g et en déduire $g(0, \frac{\pi}{2})$.
 - b) Soit la fonction h définie sur $\left[0, \frac{\pi}{2}\right]$ par : $h(x) = f\left(\frac{1}{\sin x}\right)$
 - c) Montrer que h est dérivable sur $\left[0, \frac{\pi}{2}\right]$ et que $\forall x \in \left[0, \frac{\pi}{2}\right]$ on a : $h'(x) = -\frac{\cos x}{(\sin x)^2} \times f'\left(\frac{1}{\sin x}\right)$
 - d) Préciser le sens de variation de h.

Soit la fonction f définie sur $[-1, +\infty[$ par $f(x) = \sqrt{\frac{x+1}{2}}$

- 1) a) Etudier la dérivabilité de f à gauche en -1.
 - b) Montrer que $\forall x \in]-1$, $+\infty[$ on a : $f'(x) = \frac{1}{4f(x)}$ et en déduire le sens de variation de f.
 - c) Montrer que $\forall x[0,1]$ on a: $|f'(x)| \leq \frac{1}{2}$

Exercice 11

Pour chacune des questions suivantes, une seule réponse proposée est exacte.

1) Soit f une fonction continue sur \mathbb{R} tel que f(1)=2 alors

a)
$$\lim_{x \to -\infty} f\left(\frac{x-1}{x}\right) = +\infty$$
 b) $\lim_{x \to -\infty} f\left(\frac{x-1}{x}\right) = 2$ c) $\lim_{x \to -\infty} f\left(\frac{x-1}{x}\right) = 1$

b)
$$\lim_{x \to -\infty} f\left(\frac{x-1}{x}\right) = 2$$

c)
$$\lim_{x \to -\infty} f\left(\frac{x-1}{x}\right) = 1$$

- 2) f une fonction dérivable sur \mathbb{R} vérifiant f'(2) = 0 alors :
 - a) La courbe de f admet une tangente horizontale au point d'abscisse 2.
 - b) La courbe de f admet une tangente vertical au point d'abscisse 2.
 - c) La courbe de f admet nécessairement un extremum au point d'abscisse 2.
- 3) f une fonction dérivable sur \mathbb{R} vérifiant f(2) = f(5) = 1 alors l'équation f'(x) = 0 admet dans 2,5
 - a) Au moins une solution
- b) Exactement une solution
- c) Aucune solution

Exercice 12

On donne ci-contre la courbe (C) représentative d'une fonction f

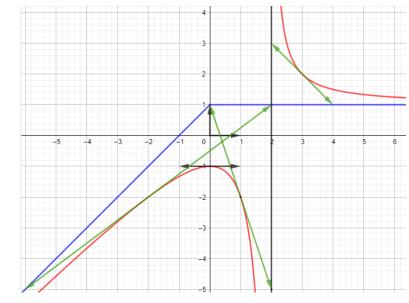
Les droites d'équations = x + 1, x = 2

- et y = 1 sont des asymptotes à (C)
- 1) Déterminer graphiquement
 - * le domaine de définition de f
 - * le domaine de continuité de f
 - * le domaine de dérivabilité de f
- 2) a) Calculer graphiquement:

$$f(-2)$$
, (0) , $f(1)$, et $f(3)$,

b) Calculer graphiquement :

$$f'(-2)$$
, $f'(0)$ $f'(1)$ et $f'(3)$



- 3) Dresser le tableau de variation de f.
- 4) Déterminer graphiquement les limites suivantes :

$$\lim_{x \to -\infty} f(x) , \lim_{x \to 2^{-}} f(x) , \lim_{x \to 2^{+}} f(x) , \lim_{x \to +\infty} f(x) , \lim_{x \to 2^{-}} f \circ f(x) , \lim_{x \to 2^{+}} f \circ f(x) \text{ et } \lim_{x \to 1} \frac{[f(x)]^{5} + 32}{x - 1}$$

Soit la fonction
$$f$$
 définie par :
$$\begin{cases} f(x) = 2x + \sqrt{1 + 4x^2} & \text{si } x \le 0 \\ f(x) = 1 + x^2 \sin\left(\frac{\pi}{2x}\right) & \text{si } 0 < x < 1 \end{cases}$$
$$f(x) = \frac{5}{3} + \frac{2x}{3\sqrt{x^2 + 3}} & \text{si } x \ge 1 \end{cases}$$

- 1) a) Déterminer $\lim_{x\to -\infty} f(x)$.
 - **b)** Montrer que f est continue en 0.
 - c) Montrer que f est strictement croissante sur $]-\infty$, 0].
- 2) a) Montrer que est continue en 1.
 - b) Etudier la dérivabilité de f à gauche en 1.
 - c) Justifier que f est dérivable sur]0, 1[puis calculer f'(x).
- 3) Soit g la fonction définie sur [1, + ∞ [par g(x) = f(x) + 2
 - a) Dresser le tableau de variation de g.
 - b) Montrer que $\forall x \in [1, +\infty[$ on $a : g(x) \le \frac{1}{4}$
 - c) Montrer que l'équation g(x) = x admet dans]4,5[une unique solution α .
 - d) Montrer que $\forall x \in [1, +\infty[$ on $a : |g(x) \alpha| \le \frac{1}{4}|x \alpha|$.

Exercice 14

Soit la fonction f définie sur $]1, +\infty[$ par $: f(x) = \frac{1}{x-1} - \sqrt{x}$

- 1) Etudier les variations de f sur]1, $+\infty$ [et calculer les limites de f aux bornes de l'intervalle]1, $+\infty$ [.
- 2) a) Montrer que l'équation f(x) = 0 admet une unique solution α dans]1, $+\infty$ [.
 - **b)** Montrer que $1 < \alpha < 2$.
- 3) Soit la fonction g définie sur $[1, +\infty[$ par $(x) = 1 + \frac{1}{\sqrt{x}}$. Montrer que $g(\alpha) = \alpha$.
- 4) a) Déterminer l'image de l'intervalle $[1, +\infty[$ par la fonction g.
 - **b)** Montrer que $\forall x[1, +\infty[$ on $\mathbf{a}: |g'(x)| \leq \frac{1}{2}$
 - c) En déduire que $\forall x[1,+\infty[$ on $\mathbf{a}:|g(x)-\alpha|\leq \frac{1}{2}|x-\alpha|$

Exercice 15

Soit la fonction f définie sur \mathbb{R} par : $f(x) = \frac{1}{\sqrt{1+x^2}} + 1$

- 1) a) Calculer $\lim_{x\to +\infty} f(x)$ et interpréter le résultat graphiquement
 - b) Justifier que f est dérivable sur $\mathbb R$ et que pour tout $x \in \mathbb R$ on a $f'(x) = \frac{-x}{(x^2+1)\sqrt{x^2+1}}$
 - c) Dresser le tableau de variation de f

- 2) Soit la fonction g définie sur \mathbb{R} par g(x) = f(x) x
 - a) Dresser le tableau de variation de g
 - b) Montrer que l'équation f(x) = x admet une unique solution α dans $\mathbb R$ et que $\alpha \in]1$, 2
 - c) Montrer que α est une solution de l'équation $\alpha^4 2\alpha^3 + 2\alpha^2 2\alpha = 0$
- 3) Soit la fonction h définie sur $\left]0, \frac{\pi}{2}\right[\operatorname{par} h(x) = f(\tan x)$
 - a) Montrer que h est dérivable sur $\left[0, \frac{\pi}{2}\right]$
 - **b)** Montrer que pour tout $x \in \left[0, \frac{\pi}{2}\right] h'(x) = -\sin x$
 - c) Dresser le tableau de variation de h.

Soit f la fonction définie sur $]-\infty$, 1[par $f(x)=2x+\frac{1}{\sqrt{1-x}}$

- 1) a) Calculer $\lim_{x \to -\infty} f(x)$ et $\lim_{x \to 1^-} f(x)$
 - b) Montrer que pour tout $x \in]-\infty$, 1[, $f'(x)=2+\frac{1}{2(\sqrt{1-x})^2}$
 - c) Dresser le tableau de variation de f.
- 2) a) Montrer que l'équation f(x) = 0 admet une unique solution α dans $]-\infty,1[$ et que $-1 < \alpha < 0$.
 - c) Déduire le signe de f(x) sur chacun des intervalles $]-\infty,\alpha[$ et $]\alpha,1[$.
- 3) Soit la fonction $g: x \mapsto x^2 2\sqrt{1-x}$
 - a) Vérifier que pour pour tout $x \in]-\infty$, 1[, g'(x) = f(x).
 - **b)** En déduire les variations de g sur $]-\infty$, 1[.
- 4) Soit *h* la fonction définie sur $\left[0, \frac{\pi}{2}\right]$ par $h(x) = f(\sin x)$.
 - a) $\lim_{x\to\frac{\pi}{2}}h(x)$.
 - b) Déterminer h'(x). En déduire les variations de h sur $\left[0, \frac{\pi}{2}\right]$.