Série d'exercices 3

Prof: Lahbib Ghaleb

3 maths

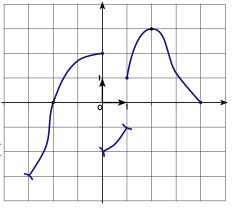
2022-2023

Exercice n°1

Ci-contre on a tracé la courbe représentative d'une fonction f définie sur $]\,-\,3,4].$

Par lecture graphique répondre au questions suivantes :

- 2. Donner un majorant et un minorant de f s'ils existent.
- 3. Donner s'il existe le maximum ou le minimum de f.
- 4. Résoudre l'équation f(E(x)) = 2 et l'inéquation $E(f(x)) \le 0$.
- 5. Donner les images des intervalles suivants par f:]-3,0] ,]0,1[et]-3,4[.



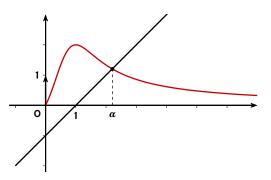
- 6. On pose g(x) = |f(x)|.
 - (a) Tracer la courbe de g.
 - (b) g est-elle continue en 0?
- 7. On pose $h(x) = \frac{1}{\sqrt{g(x)}}$.
 - (a) Préciser l'ensemble de définition de h.
 - (b) Donner les intervalles sur lesquels h est continue.

Exercice n°2

Soit f la fonction définie sur $[0,+\infty[$ par $f(x)=\frac{2x}{x^2-x+1}$.

On a représenté ci-contre la courbe de la fonction f ainsi que la droite $\Delta : y = x - 1$.

(b) En déduire que α est l'unique solution dans $[0, +\infty[$ de l'équation $x^3 - 2x^2 - 1 = 0$.



- (c) Montrer que $2,21 < \alpha < 2,22$.
- 2. Soit g la fonction définie sur \mathbb{R} par : $\begin{cases} g(x) = f(x) & \text{si } x > 1 \\ g(x) = x 1 & \text{si } x \leqslant 1 \end{cases}$

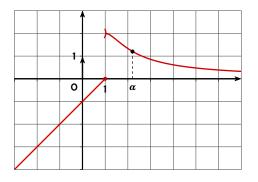
On a tracé ci-contre la courbe de la fonction g.

Par lecture graphique:

(a) Etudier la continuité de g en 1.

(b) Déterminer, graphiquement :

$$g(\mathbb{R})$$
 et $g(]-\infty,\alpha[)$.



Exercice n°3

Soit f la fonction définie sur \mathbb{R} par f(x) = $|x| - \sqrt{x^2 + 1}$.

1. (a) Montrer que pour tout réel x on a : $f(x) = \frac{-1}{|x| + \sqrt{x^2 + 1}}$.

(b) Montrer que pour tout réel x on $a : -1 \le f(x) < 0$.

(c) -1 est-il un minimum de f sur \mathbb{R} ? O est-il un maximum de f sur \mathbb{R} ? Justifier .

2. (a) Montrer que f est continue sur \mathbb{R} .

(b) Montrer que l'équation : $f(x) = -\sqrt{x}$ admet au moins une solution α dans [0,1].

(c) En déduire que $\sqrt{\alpha^3 + \alpha} = \frac{\alpha + 1}{2}$.

Exercice n°4

Soit g la fonction définie sur] $-\infty$, 1] par g(x) =x = $\frac{1}{2-x} - \sqrt{1-x}$.

1. Montrer que g est continue sur $]-\infty,1]$.

2. Montrer que g est strictement croissante sur] – ∞ , 1] .

3. (a) Montrer que l'équation : g(x) = 0 admet une unique solution α dans l'intervalle [0,1].

(b) Donner un encadrement de α d'amplitude 0,5 .

(c) Donner le signe de g sur $\ensuremath{\mathbb{R}}$.

(d) Vérifier que α vérifie l'équation : $\alpha^3 - 5\alpha^2 + 8\alpha - 3 = 0$.

Exercice n°5

Soit f la fonction définie sur \mathbb{R} par $f(x) = |x| - \sqrt{x^2 + 1}$.

1. (a) Montrer que pour tout réel x on a : f(x) = $\frac{-1}{|x| + \sqrt{x^2 + 1}}$.

(b) Montrer que pour tout réel x on α : $-1 \le f(x) < 0$.

(c) -1 est-il un minimum de f sur \mathbb{R} ? O est-il un maximum de f sur \mathbb{R} ? Justifier .

2. (a) Montrer que f est continue sur \mathbb{R} .

(b) Montrer que l'équation : $f(x) = -\sqrt{x}$ admet au moins une solution α dans [0,1].

(c) En déduire que $\sqrt{\alpha^3 + \alpha} = \frac{\alpha + 1}{2}$.