DIRECTION REGIONALE DE L'EDUCATION DE BEJA		DEVOIR DE SYNTHESE COMMUN 3 ^{ème} TRIMESTRE	
SECTION	SCIENCES EXPERIMENTALES		
EPREUVE	MATHEMATIQUES	DUREE: 3h	ANNEE SCOLAIRE : 2009 - 2010

Le sujet comporte 4 pages (3 pages et une annexe à rendre).

Exercice n°1 (3 points):

Pour chacune des questions suivantes, une seule des trois réponses proposées est exacte. L'élève indiquera sur le tableau (voir l'annexe) la lettre correspondant à la réponse choisie. Aucune justification n'est demandée.

- I) Le temps, en minutes que passe un médecin pour consulter un patient est une variable aléatoire X qui suit la loi exponentielle de paramètre 0,1.
 - 1) La probabilité qu'un patient passe plus de 15 minutes est égale à :

a/
$$1 - e^{-\frac{3}{2}}$$

b/
$$e^{-\frac{3}{2}}$$

$$\mathbf{c}/\frac{1}{\sqrt{e}}$$

2) La probabilité qu'un patient passe entre 5 minutes et 10 minutes est égale à :

$$a/\frac{1}{e}$$

b/ 1 -
$$\frac{1}{\sqrt{e}}$$

c/
$$\frac{\sqrt{e}-1}{e}$$

On considère l'équation différentielle (E) : 9y'' + π^2 y = 0.

Les solutions de l'équation (E) sont les fonctions f définies par :

$$a/f(x) = A\cos(\pi x) + B\sin(\pi x),$$
 (A

$$(A,B) \in IR^2$$
.

b/
$$f(x) = A\cos(\pi^2 x) + B\sin(\pi^2 x)$$
, $(A,B) \in IR^2$.

$$(A,B) \in IR^2$$

c/
$$f(x) = A\cos(\frac{\pi}{3}x) + B\sin(\frac{\pi}{3}x)$$
, $(A,B) \in IR^2$.

III) Soit f la fonction définie sur IR par : $f(x) = x^2 e^{-|x|}$. On désigne par (C_f) sa courbe représentative dans le plan muni d'un repère orthonormé $(O,\,\vec{i},\,\vec{j})$.

$$a/\lim_{x\to +\infty} f(x) = +\infty$$
.

- **b**/ La courbe (C_f) admet une asymptote horizontale.
- c/ f n'est pas dérivable en 0.

Exercice n°2 (4 points):

On considère l'équation différentielle (E) : $y' - 2y = 2(e^{2x} - 1)$.

- 1. Montrer que la fonction h définie sur IR par $h(x) = (2x)e^{2x} + 1$ est solution de l'équation (E).
- 2. Soit f une fonction dérivable sur IR.
 - a) Montrer que f est solution de (E) si et seulement si (f-h) est solution de l'équation

$$(E'): y'-2y=0$$

- b) Résoudre l'équation différentielle (E').
- c) En déduire l'ensemble 3 des solutions de l'équation différentielle (E).
- 3. Soit g la solution de l'équation différentielle (E) telle que g(0) = 0.
 - a) Montrer que $g(\frac{1}{2}) = 1$ et que pour tout $x \le \frac{1}{2}$ on a : $g(x) \le 1$.
 - **b**) En remarquant que pour tout réel x on a : $g(x) = \frac{1}{2} [g'(x) 2e^{2x} + 2]$, calculer l'intégrale

$$I = \int_0^{\frac{1}{2}} (1 - g(x)) dx$$
, puis en donner une signification graphique.

Exercice $n^{\circ}3$ (3,5 points):

Une maison d'édition a ouvert le 1^{er} Janvier 2002 ; sur Internet, un site de vente par correspondance. Le tableau suivant donne l'évolution du nombre de livres vendus par mois en milliers.

Mois	Janvier 2002	Janvier 2003	Juillet 2003	Janvier 2004	Juillet 2004
Rang du mois x _i	1	13	19	25	31
Nombres de livres y _i	1,2	2,5	3,5	5,1	6

- 1. Représenter le nuage de points (x_i, y_i)
- 2. L'allure du nuage de points permet d'envisager un ajustement exponentiel plutôt qu'un ajustement affine. Pour cela, on pose : $z_i = ln(y_i)$.

Ecrire une équation de la droite d'ajustement affine D de z en x obtenue par la méthode des moindres carrés. (Les z_i et les coefficients de la droite de régression seront arrondis au millième)

- **3.** En déduire la relation : $y = (1,18)e^{(0,055)x}$.
- **4.** En supposant que l'évolution se poursuive de cette façon :
 - a) Donner une estimation à l'unité prés du nombre de livres qui seront vendus en Janvier 2005.
 - b) A partir de quelle année peut-on prévoir que le nombre de livres vendus dépasse 13000 ?

Exercice n°4 (4 points):

Un sondage effectué dans une région montagneuse à propos de la construction d'un barrage a donné les résultats suivants :

- 65% des personnes interrogées sont contre la construction de ce barrage.
- Parmi les personnes qui sont contre la construction du barrage, 70% sont des écologistes.
- Parmi les personnes favorables à la construction 20% sont des écologistes.

On note par : B : " La personne interrogée est pour la construction du barrage "

E : " La personne interrogée est écologiste "

- 1. Modéliser les hypothèses par un arbre pondéré.
- 2. Calculer la probabilité de chacun des événements suivants :
 - a) La personne interrogée est pour la construction du barrage et elle est écologiste.
 - b) La personne interrogée est contre la construction du barrage et elle est écologiste.
 - c) La personne interrogée est écologiste.
 - d) La personne interrogée est pour la construction du barrage sachant qu'elle est écologiste.
- **3.** On choisit maintenant cinq personnes parmi les personnes interrogées et on note X la variable aléatoire réelle prenant pour valeur le nombre des écologistes.
 - a) Déterminer la probabilité d'avoir au moins une personne écologiste parmi les cinq.
 - **b**) Déterminer E(X) et $\sigma(X)$.

Exercice n°5 (5,5 points)

Dans le repère orthonormé(O, \vec{i} , \vec{j}), (voir l'annexe) la courbe (C_f) représente une fonction f définie et dérivable sur IR par : $f(x) = ae^{-x} + bx - 2$, où a et b sont deux réels.

- La droite **D**: y = x 2 est une asymptote oblique à la courbe (\mathbb{C}_f) au voisinage de $(+\infty)$.
- La courbe (C_f) admet une branche infinie de direction l'axe des ordonnées au voisinage de ($-\infty$).
- La courbe (C_f) admet une tangente horizontale au point A.
- La courbe (C_f) coupe l'axe des abscisses au point $B(\alpha;0)$; où α est un réel.
- **1. a)** Déterminer, par une lecture graphique, f(0) et $f(\alpha)$.
 - **b**) Déterminer $\lim_{x \to +\infty} \frac{f(x)}{x}$.
 - c) En déduire les valeurs de a et b.
- **2.** On admet dans la suite que : $f(x) = 2e^{-x} + x 2$.
 - a) Calculer f'(x) pour tout réel x.
 - b) En déduire les coordonnées du point A.
- 3. Soit \mathcal{A} l'aire de la partie du plan limitée par la courbe (C_f) et les droites d'équations respectives :

$$x = \alpha$$
, $x = 0$ et $y = 0$

- a) Calculer l'intégrale $I = \int_0^{\alpha} f(x) dx$.
- **b)** Montrer que $\mathcal{A} = (\alpha \frac{1}{2} \alpha^2)$ u.a.
- **4.** On note g la restriction de f à l'intervalle $[\ln(2); +\infty[$.
 - a) Montrer que g réalise une bijection de $[ln(2); +\infty[$ sur un intervalle J que l'on précisera.
 - b) Construire (C') la courbe de g^{-1} dans le même repère (O, \vec{i}, \vec{j}) (voir l'annexe).

Annexe à rendre avec la copie

Exercice n°1:

Questions	Réponses
I) 1)	
2)	
II)	
III)	

Exercice n°5:

