

* Médenine Monastir

* Devoir de Synthèse 3 *

Durée : 4 h

Tataouine 🖾

*** 2024-2025 ***

LD

Dream big, work hard, make it happen VV Bac 2k25 : Yes you can VV

Exercice 1 (3.5 points)

Tous les résultats seront arrondis à 10^{-3} sauf indication contraire.

Un groupe de supporters d'une équipe de football a crée une association en 2017 avec 300 adhérents.

Le tableau ci-dessous donne l'évolution du nombre d'adhérents de l'année 2017 à l'année 2024.

Année	2017	2018	2019	2020	2021	2022	2023	2024
Rang de l'année : X	1	2	3	4	5	6	7	8
Nombre d'adhérents : Y	300	380	475	623	737	814	926	1084

(A)

- 1) Calculer le coefficient de corrélation linéaire entre X et Y.
- 2 Montrer qu'un ajustement affine par la méthode de Mayer est donnée par la droite d'équation : y = 111,438x + b où b est un réel que l'on déterminera.
- 3 Donner une estimation du nombre d'adhérents en 2025.
- **(B)** On pose $Z = \ln Y$, on obtient le tableau suivant :

Rang de l'année : X	1	2	3	4	5	6	7	8
$Z = \ln Y$	5,704	5,940	6,163	6,435	6,603	6,702	6,831	6,988

- 1 Donner un ajustement affine de Z en X par la méthode des moindres carrées.
- \bigcirc En déduire l'expression de y en fonction de x.
- 3 En fait le nombre d'adhérents en 2025 est de 1400, quelle est l'ajustement le plus pertinent?
- (C) Soit f la fonction définie sur $[0, +\infty[$ par $: f(x) = \frac{2800}{1 + e^{-x}}$.

On suppose que le nombre d'adhérents en 2025 + n est f(n), avec n un entier naturel.

- 1 Calculer la limite de f en $+\infty$ et interpréter le résulta obtenu.
- \bigcirc Calculer la valeur moyenne de f sur l'intervalle [0, 5] et interpréter le résultat obtenu.

On dispose de deux urnes U_1 et U_2 .

L'urne U_1 contient deux boules blanches et trois boules noires, et l'urne U_2 contient une boule blanche et trois boules noires.

- \bigcirc On tire simultanément deux boules de U_1 et une boule de U_2 . Toutes les boules sont indiscernables au toucher.
 - a Calculer la probabilité de chacun des événements suivants :
 - A « Obtenir trois boules de même couleur »
 - B « Obtenir trois boules de couleurs différentes »
 - **b** Soit l'événement C « il reste une seule boule blanche dans les deux urnes ». Montrer que $p(C) = \frac{9}{40}$
- 2 Soit X la variable aléatoire qui correspond au nombre des boules blanches restantes dans les deux urnes.
 - a Déterminer la loi de probabilité de X.
 - b Calculer l'espérance mathématique et la variance de X.
- 3 On gagne a dinars pour chaque boule blanche tirée et on perd sept dinars pour chaque boule noire tirée dans l'épreuve précédente.

On désigne par Y la variable aléatoire qui correspond au gain algébrique.

Déterminer la valeur de a pour que le jeu soit équitable.

- 4 On répète l'épreuve précédente n fois de suite $(n \ge 4)$, en remettant chaque fois les boules tirées dans leur urne d'origine.
 - Calculer la probabilité des événements suivants »
 - E1 « obtenir une seule fois trois boule de même couleur »
 - E2 « obtenir pour la deuxième fois trois boules de même couleur à la troisième tirage »
 - lacktriangle On considère l'événement E_n « obtenir au moins deux fois trois boules de même couleur « et on note p_n la probabilité de (E_n) .

Montrer que $p_n = 1 - \left(\frac{3}{4}\right)^n$

Exercice 3 (5 points)

- 1 Déterminer suivant les valeurs de l'entier naturel n le reste modulo 9 de 4^n .
- \bigcirc En déduire le reste de la division euclidienne de $4^{2025} + 4^{2026} + 4^{2027}$ par 9.
- \bigcirc Determiner l'ensemble des entiers naturels α tel que pour tout n de $\mathbb N$, on a : $\int 4^n + 4^{n+1} + 4^{n+2} + \alpha + 4 \equiv 0 \pmod{9}$ $\alpha \equiv 2 \pmod{7}$
- 4) Soit pour tout entier naturel n la somme $S_n = 3 \times 4 + 3 \times 4^2 + 3 \times 4^3 + \cdots + 3 \times 4^{n+1}$. Écrire S_n en fonction de n, puis déterminer l'ensemble des entiers naturels n tel que S_n soit divisible par 36.
- II- On considère dans $\mathbb{Z} \times \mathbb{Z}$ l'équation (E) 3x 21y = 78.
 - a Montrer que si (x, y) est une solution de (E), alors $x \equiv 5 \pmod{7}$ puis résoudre l'équation (E).
 - b En déduire la résolution du système $S: \begin{cases} 3x \equiv 78 \pmod{21} \\ 138 < x < 152 \end{cases}$
 - 2) Soit $d = x \wedge y$ tel que (x, y) est une solution de (E).
 - a Determiner les valeurs possibles de d.
 - b Déterminer les couples (x, y) solutions de (E) tel que d = 13.
 - tel que $4^x + 4^y \equiv 2 \pmod{9}$.

Exercice 4 (7.5 points)

Soit f la fonction définie sur $[0, +\infty[$ par $f(x) = \sqrt{e^{2x} - 1}$.

On désigne par \mathscr{C} la courbe représentative de f dans un repère orthonormé $(0, \overrightarrow{i}, \overrightarrow{j})$ du plan.

- ① Déterminer $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to +\infty} \frac{f(x)}{x}$. Interpréter graphiquement.
- a Montrer que $\lim_{x\to 0^+} \frac{f(x)}{x} = +\infty$. Interpréter graphiquement.
 - Dresser le tableau de variation de f.
 - C Vérifier que pour tout $x \in]0, +\infty[, f''(x) = \frac{e^{2x}(e^{2x}-2)}{(\sqrt{e^{2x}-1})^3}.$

En déduire que le point $I(\ln(\sqrt{2}), 1)$ est un point d'inflexion de la courbe \mathscr{C} .

- d Tracer la courbe \mathscr{C} .
- a Montrer que f possède une fonction réciproque f^{-1} définie sur $[0, +\infty[$.
 - b Expliciter $f^{-1}(x)$, pour tout $x \in [0, +\infty[$.

- 4 Soit g la fonction définie sur $\left[0, \frac{\pi}{2} [par g(x)] = tan x\right]$.
 - a Montrer que g réalise une bijection de $\left[0, \frac{\pi}{2}\right]$ sur $\left[0, +\infty\right[$. On note g^{-1} sa fonction réciproque
 - b Montrer que g^{-1} est dérivable sur $[0, +\infty[$ et que $(g^{-1})'(x) = \frac{1}{1+x^2}$, $x \in [0, +\infty[$,
- 5 Pour tout $x \in [0, +\infty[$, on pose $F(x) = \int_0^x f(t)dt$ et $G(x) = f(x) g^{-1} \circ f(x)$.
 - a Montrer que pour tout $x \in]0, +\infty[, F'(x) = G'(x).$
 - b Montrer alors que pour tout $x \in [0, +\infty[$, $\int_{a}^{a} f(t)dt = f(x) g^{-1} \circ f(x)$.
 - $oxed{c}$ Calculer l'aire $\mathcal A$ en unités d'aires de la partie du plan limitée par la courbe $\mathscr C$, l'axe des abscisses et les droites d'équations respectives x=0 et $x=\ln(\sqrt{2})$.
- 6 Soit la suite (I_n) la suite définie sur \mathbb{N} par : $I_0 = \int_{-\infty}^{\infty} dx$ et pour tout $n \in \mathbb{N}^*$, $I_n = \int_{\hat{x}}^{\ln \sqrt{2}} (f(x))^n dx$
 - a Vérifier que pour tout $n \in \mathbb{N}^*$ et pour tout $x \in [0, +\infty[, (f(x))^n + (f(x))^{n+2}] = e^{2x}(f(x))^n$.
 - b Montrer que pour tout $n \in \mathbb{N}^*$, la fonction $x \mapsto \frac{1}{n+2} (f(x))^{n+2}$ est une primitive de la fonction $x \mapsto e^{2x}(f(x))^n$ sur $[0, +\infty[$.
 - \subseteq Montrer alors que pour tout $n \in \mathbb{N}$, $I_n + I_{n+2} = \frac{1}{n+3}$
 - d Montrer que la suite (I_n) est décroissante et déterminer sa limite.
- 7 Pour tout $n \in \mathbb{N}$, on pose : $U_n = I_{n+4} I_n$.
 - a Vérifier que pour tout $n \in \mathbb{N}$, $\sum_{k=0}^{n} U_{4k+1} = I_{4n+5} I_1$.
 - b Vérifier que pour tout $n \in \mathbb{N}$, $U_n = (I_{n+4} + I_{n+2}) (I_{n+2} + I_n)$. En déduire que pour tout $n \in \mathbb{N}$, $U_n = \frac{1}{n+4} \frac{1}{n+2}$.
 - \bigcirc Exprimer alors U_{4n+1} , en fonction de n.
 - d Calculer la limite lorsque n tend vers $+\infty$ de la somme

$$S_n = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots - \frac{1}{4n+3} + \frac{1}{4n+5}.$$

BON TRAVAIL