RÉPUBLIQUE TUNISIENNE
MINISTÈRE DE L'ÉDUCATION
C. R DE L'EDUCATION DE TATAOUINE

LYCEE BIR LAHMAR - MAI 2024

●●○●● PROF:GARI.HABIB Épreuve : Mathématiques

Section: 3ieme Mathématiques

DEVOIR DE SYNTHESE N°3

Durée : 3H Coefficient 4

Exercice n 1

(3 points)

Dans le tableau statique ci-dessous, la variable X désigne le nombre de jours après la naissance de nourrisson et la variable Y le poids en kilogrammes :

X (en jours)	4	6	9	14	17	19	22
Y (en kg)	3.7	3.75	3.80	3.90	4	4.35	4.5

- 1) a-Calculer la moyenne \overline{X} et l'écart type σ_X de la variable X .
 - b-Calculer la moyenne \bar{Y} et l'écart type σ_Y de la variable Y.
- 2) Représenter, dans un repère orthogonal, le nuage de points associés à la série (X,Y)ainsi le point moyen G.
- 3) a Déterminer les coordonnées des point moyen G_1 du nuage des points $M_1(x_1;y_1)$; $M_2(x_2,y_2)$ $M_3(x_3,y_3)$ Déterminer les coordonnées du point moyen G_2 du nuage M_4 , M_5 , M_6 et M_7 .
 - b En déduire une équation de la droite d'ajustement linéaire D de Y en fonction de X
- 4) Quelle pourrait être une estimation du poids du nourrisson après 30 jours de sa naissance ?

Exercice n°2:

<u>(4 points)</u>

- I 1) Montrer que pour tout $x \in \mathbb{N}^*$, $n \in \mathbb{N}^*$, $(x + 1)^n n \times -1$ est divisible par x^2 .
 - 2) En déduire le reste de la division euclidienne de 4²⁰²⁴ par 9.
- II Déterminer les nombres premiers p tels que p divise $8^p + 20$. (Utiliser le petit théorème de Fermat).
- III Soit $n \in \mathbb{N}^* \setminus \{1\}$. On pose A = n -1 et B= $5n^3 + 7n$.
- 1) Développer : (n+1)(5n²+ 5n+ 12).
- 2) Montrer que A \wedge B = A \wedge 12.
- 3) Quelles sont les valeurs possibles de A \wedge B .
- 4) Pour quelles valeurs de n, le nombre $F = \frac{5n^3 + 7n}{n-1}$ est-il un entier naturel ?

Exercice n°3:

(4 points)

Une urne contient 2 boules blanches et 4 boules noires indiscernables au toucher. .

- 1) On tire au hasard et simultanément 2 boules de l'urne Calculer la probabilité des évènements suivants :
 - a) A: « avoir au moins une boule blanche ».
 - b) B: « avoir 2 boules de couleur différentes ».
- 2) On tire maintenant au hasard et successivement avec remise deux boules.
- a) Calculer la probabilité des évènements A et B de la première question.
- b) On effectue n tirages successifs avec remise et on note p_k la probabilité d'avoir une boule blanche pour la première fois au k-ième tirage ($1 \le k \le n$).
- i) Calculer: p₁, p₂ et p₅.
- ii) Calculer : p_k ; avec $(1 \le k \le n)$.
- iii) Déduire en fonction de n l'expression $S_n = \sum_{k=1}^n p_k$ puis $\lim_{n \to \infty} S_n$

Exercice n°4 ·

(5 points)

Dans l'espace rapporté à un repère orthonormé $(0, \vec{\imath}, \vec{j}, \vec{k})$ on donne les points A(1,0, 2) ; B (0,1,2) et C (1,-2,0) et le plan Q d'équation cartésienne : 3x - 2y + z + 3 = 0

- 1) a) Donner les composantes des vecteurs \overrightarrow{AB} et \overrightarrow{AC}
 - b) Déduire que les points A, B et C déterminent un plan P
 - c) Déduire qu'une équation cartésienne de P est x + y z + 1 = 0
- 2) a) Montrer que P et Q sont perpendiculaires
 - b) Donner une représentation paramétrique de la droite $D = P \cap Q$
- 3) a) Déterminer les coordonnées du point H projeté orthogonale du point I (1, 2, -2) sur le plan P
 - b) Vérifier que la distance du point I au plan P est égal à $2\sqrt{3}$
- 4) Soit l'ensemble $S = \{M(x, y, z) \in \xi / x^2 + y^2 + z^2 2x 4y + 4z 18 = 0\}$
 - a) Montrer que S est une sphère dont on déterminera le centre et le rayon
 - b) Montrer que S et P sont sécants en un cercle dont on déterminera le centre et le rayon.

Exercice n°5:

(5 points)

- I. 1)Soit f la fonction définie sur IR par $\mathbf{f}(\mathbf{x}) = \frac{2\mathbf{x}}{\sqrt{\mathbf{x}^2 + 8}}$
 - a) Montrer que f est une fonction impaire
 - b) Calculer $\lim_{x \to +\infty} f(x)$ Interpréter graphiquement le résultat obtenu
- 2)a) Montrer que f est dérivable et que pour tout rée x $\mathbf{f}'(\mathbf{x}) = \frac{16}{\sqrt{\mathbf{x}^2 + 8^3}}$
 - b) Dresser alors le tableau de variation de f sur $\, R \,$
 - c) Justifier que $\forall \mathbf{x} \in [0,2]$, $0 \le \mathbf{f}(\mathbf{x}) \le 2$
 - 3) Montrer que pour tout réel x : $\mathbf{f}(\mathbf{x}) \mathbf{x} = -\frac{\mathbf{x}(\mathbf{x}^2 + 4)}{\sqrt{\mathbf{x}^2 + 8}(2 + \sqrt{\mathbf{x}^2 + 8})}$.

En déduire que : $f(x) \le x \quad \forall x \in [0,2]$.

- II. Soit (U_n) la suite définie par $U_0=2$ et pour tout entier naturel n $U_{n+1}=\frac{2\ U_n}{\sqrt{U_n^2+8}}$
 - 1) a) Montrer que pour tout $n \in IN$; $0 \le U_n \le 2$.
 - b) Montrer que la suite (U_n) est décroissante.
 - 2) Soit (V_n) la suite définie pour tout $n \in IN$ par ; $V_n = 1 + \frac{4}{U_n^2}$
 - a) Montrer que la suite (V_n) est géométrique de raison 2.
 - b) En déduire V_n et U_n en fonction de n puis calculer $\lim_{n\to +\infty} V_n$ et $\lim_{n\to +\infty} U_n$.
- 3) On pose $S_n = \sum_{k=0}^n \frac{4}{U_n^2}$ et $W_n = \frac{S_n}{2^{2n+2}}$
 - a) Montrer que $S_n = 2^{n+2} n 3$
 - b) Montrer que $0 < W_n < \frac{1}{2^n}$ en déduire $\lim_{n \to +\infty} W_n$.