L.P Mahdia L.P Sfax 2	<u> Bevoír de Contrôle nº3</u>	Niveau : 4 ^{ème} Maths
<u>Date</u> :25 / 04 / 2023	<u>Profs</u> : Hichem Zaghdane & Tarek Meddeb	<u>Durée</u> : 2 heures

Exercice n°1 (6pts)

L'espace \mathscr{E} est rapporté à un repère orthonormé direct $\left(O,\vec{i},\vec{j},\vec{k}\right)$.

On considère les points A(2;0;0), B(0;2;0), C(2;2;2), D(0;0;2) et E(2;2;0).

- 1) a/ Montrer que le triangle ABC est équilatéral.
 - b/ Calculer $\overrightarrow{AB} \wedge \overrightarrow{AC}$. En déduire l'aire \mathcal{A} du triangle ABC.
 - c / Calculer le volume \mathcal{U} du tétraèdre EABC, En déduire la distance du point E au plan P = (ABC).
- 2) a/ Ecrire une équation cartésienne du plan P.
 - b/Soient a, b et c trois réels tels que a+b=c+4.

Vérifier que le point M(a;b;c+2) appartient à P. En déduire que $a^2+b^2+c^2 \ge \frac{16}{3}$.

- 3) a/ Ecrire une équation de la sphère (S) de centre E et tangente au plan P.
 - b/Déterminer les coordonnées du point de contact G de la sphère (S) et du plan P.
 - c/ Montrer que G est le centre de gravité du triangle ABC.
- 4) Soit *h* l'homothétie de rapport (-2) telle que h(E) = D.
 - a/ Déterminer le centre de h.
 - b / Caractériser la sphère (S') image de (S) par h, puis déterminer $(S') \cap P$.
- 5) Soit a un réel de l'intervalle [1;e] et le point $I_a(2\ln a, 2\ln a, 2-2\ln a)$.
 - a/ Montrer que $I_a \in [ED]$.
 - b/On note $d_a = d(I_a, (AB))$. Montrer que $d_a = \sqrt{12(\ln a)^2 16\ln a + 6}$.
 - c/ Montrer que d_a est minimale si et seulement si, $I_a=G$.
 - d/ Déterminer une représentation paramétrique de la droite Δ image de (AB) par h.

Exercice n°2 (5 pts)

Soit *a* un entier naturel supérieur ou égal à 2.

On pose $S = \sum_{k=0}^{6} a^k$ et soit p un nombre premier tel que p divise S.

- 1) a/M ontrer que $a^7 \equiv 1 \pmod{p}$.
 - b/ Montrer p ne divise pas a.
 - c/En déduire que, pour tout $m \in IN$, $a^{(p-1)m} \equiv 1 \pmod{p}$.
- 2) On suppose que 7 ne divise pas p-1.
 - a/Montrer que $a \equiv 1 \pmod{p}$.
 - b / En déduire que p = 7.
- 3) Montrer que, si p un nombre premier tel que p divise S, alors p = 7 ou $p \equiv 1 \pmod{7}$.

Soit *n* un entier supérieur ou égal à 2.

- 1) On considère l'équation différentielle (E): $y'+ny=x+\frac{1}{n}$.
 - a/Vérifier que la fonction u définie par : $u(x) = \frac{x}{n} + e^{-nx}$ est solution de (E).
 - b/Résoudre l'équation différentielle (E'): y'+ny=0.
 - c / Montrer que : f est solution de (E) si, et seulement si, f u est solution de (E').
 - d / Résoudre l'équation (E).
 - e/ Déterminer la solution f de (E) vérifiant : f(0) = -1.
- 2) Soit f_n la fonction définie sur *IR* par : $f_n(x) = \frac{x}{n} e^{-nx}$.

On note (C_n) sa représentation graphique dans un repère orthonormé (O,\vec{i},\vec{j}) .

- a/ Calculer $\lim_{x\to -\infty} f_n(x)$ et $\lim_{x\to +\infty} f_n(x)$.
- b/ Etablir le tableau de variations de f_n .
- 3) a/ Montrer que l'équation : $f_n(x) = 0$ admet dans IR une solution unique α_n .
 - b/Montrer que $f_n\left(\frac{1}{n}\right) < 0$.
 - c / Montrer que, pour tout $x \in IR$, $e^x \ge x + 1$. En déduire que $f_n(1) > 0$.
 - d / Montrer que $\frac{1}{n} < \alpha_n < 1$.
- 4) a/ Montrer que, pour tout entier $n \ge 2$, $f_{n+1}(\alpha_n) = \frac{n e^{-(n+1)\alpha_n}}{n+1} \left(e^{\alpha_n} \frac{1}{n} 1\right)$.
 - b/ En déduire que, pour tout entier $n \ge 2$, $f_{n+1}(\alpha_n) > 0$.
 - c / Montrer que la suite $(\alpha_{\scriptscriptstyle n})_{\scriptscriptstyle n\geq 2}$ est décroissante puis en déduire qu'elle est convergente.
- 5) a/ Montrer que, pour tout entier $n \ge 2$, $\frac{1}{n^2} < e^{-n\alpha_n} < \frac{1}{n}$.
 - *b*/ En déduire que, pour tout entier $n \ge 2$, $\frac{\ln n}{n} < \alpha_n < \frac{2 \ln n}{n}$, puis calculer $\lim_{n \to +\infty} \alpha_n$.