LYCÉE DE TABARKA Prof : MERSANI IMED

A.S: 2022-2023

•	1	4	^1	TOO
AVAL	r np	cont	rnie	
	uc			

Épreuve : Mathématiques

Section: Mathématiques

Durée : 2 Heures

Date: 04-05-2023

Exercice 1: (10 pts)

Partie I:

- 1 On considère les équations différentielles (E): y' 2y = 0 et (F): y'' y = 0.
 - (a) Résoudre l'équation différentielle (E).
 - b Soit g une fonction deux fois dérivable sur \mathbb{R} , on pose $h(x) = e^x g(x)$, $x \in \mathbb{R}$. Montrer que g est une solution de (F), si et seulement si, h' est une solution de (E).
 - En déduire que l'ensemble des solutions de (F) est l'ensemble des fonctions définies sur \mathbb{R} par $g(x) = \alpha e^x + \beta e^{-x}$, $(\alpha, \beta) \in \mathbb{R}^2$.
- Soit g la solution de (F) vérifiant : g(0) = 0 et g'(0) = 2.
 - (a) Montrer que pour tout $x \in \mathbb{R}$, $g(x) = e^x e^{-x}$.
 - **b** Dresser le tableau de variation de g. En déduire le signe de g(x) pour tout $x \in \mathbb{R}$.
- Soit f la fonction définie sur \mathbb{R} par : $f(x) = \frac{1}{e^x + e^{-x}}$. On désigne par \mathscr{C}_f la courbe représentative de f dans un repère orthonormé (O, \vec{i}, \vec{j}) . Étudier les variations de f et construire \mathscr{C}_f .
- 4 Soit φ la fonction définie sur $\left]0, \frac{\pi}{2}\right[$ par : $\varphi(x) = \ln(\tan x)$.
 - (a) Montrer que φ admet une fonction réciproque φ^{-1} définie sur \mathbb{R} .
 - **b** Montrer que φ^{-1} est dérivable sur \mathbb{R} et que $\forall x \in \mathbb{R}$, $(\varphi^{-1})'(x) = f(x)$.
 - © Soient $\lambda \in \mathbb{R}_+^*$ et $\mathcal{A}(\lambda)$ est l'aire en (u.a) de la partie du plan limitée par la courbe \mathscr{C}_f , l'axe des abscisses et les droites d'équations x=0 et $x=\lambda$. Calculer $\lim_{\lambda \to +\infty} \mathcal{A}(\lambda)$.

Partie II:

Soit $n \in \mathbb{N}^*$, on pose pour tout $x \in]0, +\infty[$, $G_n(x) = \int_0^{\ln x} \frac{(g(t))^n}{g'(t)} dt$.

- 1 Calculer $G_1(x)$, pour tout $x \in]0, +\infty[$.
- 2 a Vérifier que : $\forall t \in \mathbb{R}, (g(t))^2 = (g'(t))^2 4$.
 - **b** En déduire que : $\forall n \in \mathbb{N}^* \setminus \{1\}$ et $\forall x \in]0, +\infty[$, $G_{n+1}(x) = \frac{(x^2-1)^n}{nx^n} 4G_{n-1}(x)$.
- 3 Soit (u_n) la suite définie sur \mathbb{N}^* par $u_n = \frac{G_n(\sqrt{2})}{2^n}$

http://mathematiques.kooli.me/

- (a) Calculer u_1 .
- **b** Montrer que : $\forall n \in \mathbb{N}^* \setminus \{1\}, u_{n+1} = \frac{1}{2n(\sqrt{2})^{3n}} u_{n-1}.$
- © Montrer que (u_n) est décroissante. En déduire que (u_n) est convergente et calculer $\lim_{n\to+\infty} u_n$.

Exercice 2: (10 pts)

Les parties A et B sont indépendantes

Partie A:

- 1 On considère dans $\mathbb{Z} \times \mathbb{Z}$ l'équation (E): 143u 840v = 1.
 - (a) Vérifier que le couple (47,8) est une solution de (E).
 - **b** Résoudre dans $\mathbb{Z} \times \mathbb{Z}$ l'équation (*E*).
 - © Déterminer les inverses de 143 modulo 840.
- 2 Soit $x \in \mathbb{N}^*$ tel que : $x \land 899 = 1$.
 - (a) Montrer que : $x \wedge 29 = 1$ et $x \wedge 31 = 1$.
 - (b) Déduire que : $x^{840} \equiv 1 \pmod{899}$.
- 3 Déterminer un entier naturel x tels que : $\begin{cases} x^{143} \equiv 1 \pmod{899} \\ 100 \leqslant x \leqslant 1000 \end{cases}$

Partie B:

Pour tout entier naturel $n \ge 2$, on pose $a_n = (n!)^2 + 1$.

- 1 Vérifier que : $a_n \equiv 1 \pmod{2}$.
- Soit p un diviseur premier positif de a_n . Montrer que p > n.
- 3 On suppose que : $p \equiv 3 \pmod{4}$ et on pose p = 4k + 3 avec $k \in \mathbb{N}$.
 - (a) Montrer que l'entier naturel $N = 1 + (n!)^{2(2k+1)}$ est divisible par a_n et que : $n! + (n!)^p \equiv 0 \pmod{p}$.
 - **b** En déduire que : $p \equiv 1 \pmod{4}$.
- Montrer qu'il existe une infinité d'entiers naturels premiers qui s'écrivent sous la forme : p = 4k + 1, où $k \in \mathbb{N}^*$.