Mr Hédi Ayache	Devoir de synthèse N°2	Durée : 4 H
4M	Épreuve : Mathématiques	Fév 2010

Exercice 1:

- **1.** Soit $x \in \mathbb{R}_+^*$ et f la fonction logarithme népérien notée ln.
 - a) Montrer que pour tout $t \in [x, x+1]$, on a : $\frac{1}{x+1} \le f'(t) \le \frac{1}{x}$.
 - b) En déduire que pour x > 0, on a : $\frac{1}{x+1} \le \ln\left(\frac{x+1}{x}\right) \le \frac{1}{x}$.
- **2.** Pour $n \in \mathbb{N}^*$, on pose $u_n = 1 + \frac{1}{2} + ... + \frac{1}{n} = \sum_{k=1}^{n} \frac{1}{k}$.
 - a) Montrer que pour $n \in \mathbb{N}^*$, $u_n 1 + \frac{1}{n+1} \le \ln(n+1) \le u_n$.
 - b) Déduire un encadrement de u_n puis montrer que $\lim_{n\to+\infty}\frac{u_n}{n}=0$
- 3. a) Montrer que pour $t \ge 0$, on a : $1 t \le \frac{1}{1 + t} \le 1$.
 - b) Déduire que pour $x \ge 0$, $x \frac{x^2}{2} \le \ln(1+x) \le x$.
- **4.** On pose $v_n = \frac{n^n}{n!}$.
 - a) Montrer que $ln\left(\frac{v_{n+1}}{v_n}\right) = n\ln\left(1 + \frac{1}{n}\right)$.
 - b) Justifier que pour $k \in \mathbb{N}^*$, $\frac{1}{k} \frac{1}{2k^2} \leqslant \ln\left(1 + \frac{1}{k}\right) \leqslant \frac{1}{k}$.
 - c) Déduire que pour $n \in \mathbb{N}^*$, $n \frac{1}{2}u_n \le \ln(v_{n+1}) \le n$. montrer alors que $\lim_{n \to +\infty} \frac{\ln(v_n)}{n} = 1$.
- **5.** On pose pour $n \in \mathbb{N}$, $w_n = \frac{n}{\sqrt[n]{n!}}$.
 - a) Montrer que $\ln(w_n) = \frac{\ln(v_n)}{n}$.
 - b) Déduire que $\lim_{n \to +\infty} \frac{n}{\sqrt[n]{n!}}$

Exercice 2:

Le plan est rapporté à un repère orthonormé $(O; \overrightarrow{t}, \overrightarrow{f})$. Soit f la similitude indirecte qui à tout point M d'affixe z, associe le point M' d'affixe z' tel que $z' = -2i\overline{z} + 6$ où \overline{z} désigne le conjugué de z.

- 1. Déterminer le rapport de f.
- **2.** Montre que f admet un seul point invariant, on le note I. Calculer son affixe.
- 3. Déterminer l'ensemble des points M d'affixe z tels que $\overrightarrow{IM'}=2\overrightarrow{IM}$. En déduire une équation de l'axe de f.
- **4.** Caractériser $f \circ f$.

Exercice 3:

Dans le plan rapporté au repère orthonormé direct $(O; \overrightarrow{t}, \overrightarrow{f})$, on considère l'ellipse (\mathscr{E}) d'équation : $\frac{x^2}{4} + y^2 = 1$ et on désigne par M le point de coordonnées $(2\cos\theta,\sin\theta)$, ou θ est un réel de $\left]0,\frac{\pi}{2}\right[$.

- 1. a) Déterminer, par leurs coordonnées les sommets et les foyers de (&).
 - b) Tracer (&) et placer ses foyers.
 - c) Vérifier que le point M appartient à (\mathcal{E}) .
- **2.** Soit (T_M) la tangente à (\mathcal{E}) en M.

Montrer qu'une équation de (T_M) dans le repère $(O; \vec{\imath}, \vec{\jmath})$ est : $x \cos \theta + 2y \sin \theta - 2 = 0$.

- 3. Soit A(2,0) et A(-2,0) les sommets principaux de (\mathscr{E}) . (sommets du grand axe). On désigne respectivement par (T) et (T') les tangentes à (\mathscr{E}) en A et A'. On désigne respectivement par P et P' les points d'intersections de (T_M) avec les tangents (T) et (T').
 - a) Donner les coordonnées des points P et P'.
 - b) Montrer que $\overrightarrow{AP}.\overrightarrow{A'P'} = 1$.

Exercice 4:

Dans le plan orienté \mathscr{P} . On donne un carré ABCD de centre O tel que $(\overrightarrow{AB}, \overrightarrow{AD}) \equiv \frac{\pi}{2} [2\pi]$. S_1 est la similitude directe de centre C qui envoie D sur A.

- **1.** Déterminer le rapport et une mesure de l'angle de S_1 .
- **2.** On note B' l'image du point B par S_1 .
 - a) Montrer que $S_1 \langle (DB) \rangle = (AB)$.
 - b) Montrer que la droite (CB') est tangente au cercle circonscrit au carré ABCD.
 - c) Construire alors le point B'.
- 3. S_2 est la similitude directe qui transforme O en A et A en B.
 - a) Déterminer et construire $B_1 = S_2(C)$.
 - b) Déterminer le rapport et une mesure de l'angle de S_2 .
 - c) En déduire que $S_2 \circ S_1$ est une homothétie dont on déterminera le rapport.
- **4.** Soit E le milieu du segment [DC], la droite (AE) la droite (DB) en I. Montrer que les points C, I et B_1 sont alignés.
- **5.** On note Ω le centre de S_2 .
 - a) Montrer que Ω appartient au cercle passant par A et B et tangente à (AC).
 - b) Montrer que Ω appartient au cercle de diamètre [*OB*]. Construire alors Ω .