Profs: Mme KHADHAR - Mr LAATAOUI

Décembre 2006 Classes: 3^{ème} Sc _{1, 2 et 3}

Durée: 2 heures

Exercice n°1: (10 points)

- I. Soit f la fonction définie par $f(x) = \frac{\sqrt{x^2 + 3} 2}{x 1}$.
 - 1. Déterminer l'ensemble de définition de f
 - 2. Vérifier que pour tout $x \in D_f$, on a : $f(x) = \frac{x+1}{\sqrt{x^2+3}+2}$. En déduire que f est majorée par 1.
 - 3. Calculer $\lim_{f} f$; f est elle prolongeable par continuité en 1 ? Si oui définir ce prolongement.
- II. Soit g la fonction définie sur \mathbb{R} par : $g(x) = \begin{cases} \frac{2x-1}{2-x} & si \ x \in]-\infty, 0[\\ x^3+x-\frac{3}{2} & si \ x \in [0,1]\\ \frac{\sqrt{x^2+3}-2}{x-1} & si \ x \in]1, +\infty[\end{cases}$

On désigne par (C_g) sa courbe représentative dans un repère orthonormé (O, \vec{i}, \vec{j}) .

- 1. Etudier la continuité de g en 0 et en 1.
- 2. Calculer lim g. Interpréter graphiquement le résultat obtenu.
- 3. a) Montrer que la droite $\Delta: y = -2$ est une asymptote à (C_g) au voisinage de $-\infty$.
 - b) Etudier la position relative de (C_g) par rapport à $\Delta \text{ sur }]-\infty,0[$.
- 4. Montrer que l'équation "g(x) = 0" admet au moins une solution α dans l'intervalle]0,1[.
- 5. Calculer $\lim_{x \to 1^{-}} \frac{g(x) g(1)}{x 1}$.

Exercice n°2: (6.5 points)

Soit ABC un triangle tel que : AB = 3, AC = 5 et $\stackrel{\wedge}{A} = \frac{2\pi}{3}$. (L'unité des longueurs étant le centimètre).

- 1. Faire une figure que l'on complètera au fur et à mesure de l'exercice.
- 2. Calculer le produit scalaire $\overrightarrow{AB} \cdot \overrightarrow{AC}$ et la distance BC.
- 3. Montrer que $\overrightarrow{BA} \cdot \overrightarrow{BC} = \frac{33}{2}$.
- 4. Soit G le barycentre des points pondérés (A, 1); (B, -1) et (C, 1).
 - a) Montrer que ABCG est un parallélogramme. Construire G.
 - b) Calculer BG (on pourra écrire $\overline{BG} = \overline{BA} + \overline{BC}$).
 - c) Montrer que, pour tout point M du plan on a : $MA^2 MB^2 + MC^2 = MG^2 33$.
 - d) En déduire l'ensemble ζ des points M du plan tels que $MA^2 MB^2 + MC^2 = 16$.

Exercice n°3: (3.5 points)

Dans le plan orienté, on considère un triangle ABC isocèle, rectangle en A tel que $(\overline{AB}, \overline{AC}) \equiv \frac{\pi}{2} [2\pi]$.

- 1. Déterminer la mesure principale de $(\overline{BC}, \overline{AC})$.
- 2. On construit, à l'extérieur de ce triangle, les triangles AIB et AJC rectangles et isocèles en I et J

respectivement.

- a) Prouver que A, I et J sont alignés.
- b) Montrer que (IJ) // (BC).
- c) Montrer que le quadrilatère BIJC et un rectangle.
- 3. Déterminer et construire l'ensemble ξ des points M du plan tels que : $(\overrightarrow{MB}, \overrightarrow{MC}) = \frac{111\pi}{4} [2\pi]$.