Lycée Mohamed Alí - Sfax

зème Scíences- Exper

Devoir de Synthèse : N3

Épreuve : *Mathématique*

Date: 22/05/2025

Durée: 3 heures

Exercice 1 : (5,5pts)

Une urne contient 9 boules: { 4 blanches numérotées:1;1;1;2 5 noires numérotées:1;1;1;2;2

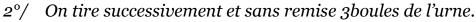
1°/ On tire simultanément et au hasard trois boules de l'urne. a- Calculer le cardinal de l'univers Ω .

b-Calculer la probabilité de chacun des évènements suivants :

A : « Avoir 3boules de même couleur ».

B: « Avoir 3boules de même numéro ».

 $C = A \cup B$.



Calculer la probabilité de chacun des évènements suivants :

D : «Avoir au premier tirage une boule blanche numéroté 1 ».

E: «Avoir au premier tirage une boule numéroté 1 ».

F: «Avoir exactement une seule boule numéroté 1 ».

G: «Avoir au moins une boule numéroté 1 »

3°/ *On tire successivement et avec remise 4boules de l'urne.*

Calculer la probabilité de chacun des évènements suivants :

H: « Avoir quatre boules de même numéro ».

I : « Avoir un produit des numéros marqués paire ».

J : «Avoir une boule blanche au premier tirage et une boule numéroté 1 la première fois au troisième tirage ».

Exercice 2 : (4 pts)

Une entreprise souhaite estimer le nombre d'abonnés à une nouvelle application mobile en fonction du tarif mensuel. Elle réalise un sondage auprès d'un panel de clients Les résultat sont donnés dans le tableau ci-dessous :

Prix mensuel (en dinars) X	5	6	7	8	9	10	11	12
Nombre d'abonnés Y	295	275	245	205	190	145	125	80

- 1°/Représenter le nuage des points dans un repère orthogonal (unité 1cm pour 1 dinar en abscisse, 1cm pour 20 abonnés en ordonnée).
- $2^{\circ}/a$ Calculer la moyenne \overline{X} de la variable X
 - b-Calculer la moyenne \overline{Y} de la variable Y
 - c-Placer le point moyen G de ce nuage sur le graphique.
- $3^{\circ}/$ a- Calculer les coordonnées du point moyen G_1 de la première moitié du nuage
 - b- calculer celle du point G_2 du deuxième moitié .
 - c- Tracer la droite de Mayer (G_1G_2)
 - d- Estimer graphiquement le tarif mensuel pour qu'il y ait au moins 180 abonnés. (Laisser un tracé en pointillés sur le graphique)
- $4^{\circ}/a$ Vérifier qu'une équation possible de la droite de Mayer (G_1G_2) est y = -30x + 450 b- En déduire :
 - Le nombre d'abonnés prévus si le prix est fixé à 4 dinars.
 - Le prix à ne pas dépasser pour espérer avoir plus de 200 abonnés.

Page 1

Exercice 3: (5 pts)

Soit la suite (u_n) définie par $u_0 = \frac{5}{3}$ et $u_{n+1} = \sqrt{3u_n - 2}$; $\forall n \in \mathbb{N}$.

- 1°/ a- Montrer par récurrence que pour tout $n \in \mathbb{N}$, on $a: 1 < u_n < 2$
 - b-Montrer que tout $n \in \mathbb{N}$, on a: tout $n \in \mathbb{N}$, $(u_{n+1})^2 (u_n)^2 = (u_n 1)(2 u_n)$
 - c- En déduire la monotonie de la suite (u_n)
 - *d-En déduire que pour tout n* $\in \mathbb{N}$, on $a: \frac{5}{2} \le u_n < 2$
- $2^{\circ}/a$ -Montrer que pour tout $n \in \mathbb{N}$; on $a: |u_{n+1}-2| = \frac{3}{|u_{n+1}+2|} |u_n-2|$
 - b- En déduire que pour tout $n \in \mathbb{N}$; on $a: |u_{n+1}-2| \le \left(\frac{9}{11}\right)|u_n-2|$
 - *c-Montrer que pour tout* $n \in \mathbb{N}$; on $a: |u_n-2| \le \left(\frac{9}{11}\right)^n$
 - *d-Déterminer* $\lim_{n\to+\infty} u_n$
- $3^{\circ}/Soit S_n = \frac{1}{n^2} \sum_{k=1}^n (u_k)^2 ; n \in \mathbb{N}$
 - a-Montrer que pour tout $n \in \mathbb{N}$, on $a: \sum_{k=1}^{n} (u_k)^2 = \sum_{k=0}^{n-1} [3(u_k-2)+4]$ b-En déduire que $S_n = \frac{3}{n^2} (\sum_{k=0}^{n-1} (u_k-2)) + \frac{4}{n}$

 - c-Montrer que pour tout $n \in \mathbb{N}$, $|S_n| \le \frac{33}{2n^2} \left(1 \left(\frac{9}{11}\right)^n\right) + \frac{4}{n}$
 - d-Déterminer, alors, $\lim_{n\to\infty} S_n$

Exercice 3: (5,5 pts)

L'espace est muni d'un repère orthonormé $(0; \vec{\iota}; \vec{\jmath}; \vec{k})$. *On considère les point;* S(1; 1; 1) ; A(4;1;1); B(1;4;1) et C(1;1;4).

- 1°/a- Vérifier que les vecteurs \overrightarrow{SA} ; \overrightarrow{SB} et \overrightarrow{SC} sont deux à deux orthogonaux
 - a- Déterminer la nature du triangle SAB et vérifier que son aire $\mathcal{A} = \frac{9}{3}$
- c- Soit \mathcal{V} le volume de tétraèdre SABC. Montrer que $\mathcal{V} = \frac{9}{2}$ (on donne le volume d'un tétraèdre est égale $\frac{B \times h}{3}$ tel que b l'aire de la base et h la hauteur associer)
- 2° /Soit la droite Δ passant par le point S de vecteur directeur \overrightarrow{u} $\begin{pmatrix} 1\\1 \end{pmatrix}$
 - a- Vérifier que la droite Δ est perpendiculaire au plan (ABC)
 - b- Déterminer une équation cartésienne du plan (ABC)
- $3^{\circ}/On$ donne par la suite (ABC): x + y + z 6 = 0
 - a- Déterminer une représentation paramétrique de la droite Δ .
 - *b-* Calculer les coordonnées du point H tel que $\Delta \cap (ABC) = \{H\}$
- 4º/a- Justifier que le point H est le projeté du point S sur le plan (ABC)
 - b- Calculer la distance de S au plan (ABC)
 - c- En déduire l'aire du triangle ABC
- 5° /Soit le plan Q: x + y 5z = 0.
 - a- Montrer que les plan (ABC) et Q sont sécants
 - b- Vérifier que Q = (OAB).
 - c- En déduire l'intersection des deux plans (ABC) et Q.