Lycée : Mohamed Ali

Profs: Fourati Ali; Derbel Louati Nada

Devoir de synthèse N°3

Classe: 2^{ième} Sciences 5 et 6

Date: 27/05/2025

Durée : 2 h

Épreuve: Mathématiques

Exercice 1(5pts)

Soit la fonction f définie par $f(x) = \frac{ax+b}{cx+d}$ sa courbe dans un repère orthonormé $(0; \overrightarrow{\iota}; \overrightarrow{J})$ est un hyperbole \mathcal{H} . On considère I le centre de symétrie de l'hyperbole \mathcal{H} .

- 1°/ On donne $0 \in \mathcal{H}$ et le point $A(2;4) \in \mathcal{H}$ tel que 0 et A sont symétriques par rapport I.
 - a- Montrer que I(1; 2).
 - b- Déterminer les équations des deux asymptotes de l'hyperbole H.
 - c- On donne dans la feuille annexe une partie de \mathcal{H} sur l'intervalle]1; + ∞ [. placer le point I tracer les deux asymptotes et compléter la courbe \mathcal{H} .

$$2^{\circ}/a$$
- Justifier que $b=0$; $\frac{a}{c}=2$ et que $\frac{d}{c}=-1$

- b-Montrer que pour tout $x \in]-\infty; 1[\cup]1; +\infty[$, on $a: f(x) = \frac{2x}{x-1}$
- 3° /On donne dans la même figure une deuxième courbe \mathcal{P} d'une fonction g
 - a- Déterminer la nature et les éléments caractéristiques de la courbe \mathcal{P} .
 - b- Montrer que pour tout $x \in \mathbb{R}$, $g(x) = -x^2 + 4x$.
- $4^{\circ}/R$ ésoudre graphiquement dans \mathbb{R} les deux inéquations suivantes :

$$a$$
- $0 \le g(x) \le f(x)$.

$$b- 2x\left(\frac{1}{x-1}-2\right)+x^2\geq 0$$

Exercíce 2(5pts)

- Soit la fonction f définie par $f(x) = \frac{-x+3}{x+3}$. 1°/a- Déterminer D_f l'ensemble de définition de la fonction f.
 - b- Montrer pour tout $x \in D_f$; on $a: f(x) = -1 + \frac{6}{x+3}$.
 - *c- En déduire le sens de variation de la fonction sur l'intervalle* $]-3;+\infty[$.
- $2^{\circ}/On$ considère \mathscr{C}_f la courbe représentative de f dans un repère orthonormé $(0; \vec{\iota}; \vec{\jmath})$.
 - a- Déterminer la nature et les éléments caractéristiques de la courbe \mathscr{C}_f .
 - b- Déterminer les coordonnées des points d'intersections de \mathscr{C}_{f} et les deux axes du
 - c- Tracer dans un repère orthonormé la courbe \mathscr{C}_f et ses éléments caractéristiques.
- 3° / Soit la fonction h définie par $h(x) = 1 \frac{2|x|}{3+|x|}$ et \mathscr{C}_h sa courbe dans le même repère
 - a- Déterminer l'ensemble de définition de h et vérifier que la fonction h est paire.
 - *b- Vérifier que pour tout* $x \in [0; +\infty[$, h(x) = f(x).
 - c- En déduire la courbe \mathscr{C}_h à partir de courbe \mathscr{C}_f .
 - d- Déterminer à partir du graphique les variations de la fonction h .

Exercíce 3 (4,5pts)

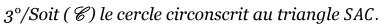
Soit $(0; \vec{\iota}; \vec{\jmath})$ un repère orthonormé du plan et l'ensemble (\mathscr{C}) : $x^2 + y^2 - 2(4x + 3y) = 0$ 1°/Montrer que (\mathscr{C}) est le cercle de centre I(4; 3) et de rayon R = 5.

- 2° /Soit le point A(1; -1).
 - a- Vérifier que A ∈(\mathscr{C})
 - b- Donner une équation de la droite D la tangente au cercle(\mathscr{C}) en A.
- $3^{\circ}/Soit\ la\ droite\ \Delta: x y + 3 = 0$.
 - a- Calculer la distance du point I à la droite Δ.
 - b- Déduire que le cercle (\mathscr{C}) et la droite Δ sont sécants.
 - c- Calculer les coordonnés des points d'intersections de ($\mathscr C$) et Δ .

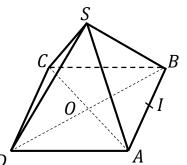
Exercíce 4 (5,5pts)

Soit SABCD une pyramide régulier (c'est-à-dire SA = SB = SC = SD = AB) dont la base ABCD est un carré de centre O

- 1º/ Soit le point I le milieu de l'arête [AB].
 - a- Quelle est la nature du triangle SAB. En déduire que $(SI) \perp (AB)$.
 - b- Montrer que les droite (OI) et (AB) sont perpendiculaires.
 - c- En déduire que (AB) perpendiculaire au plan (SOI).
 - d- Justifier que (SOI) est le plan médiateur de [AB].
- 2°/Soit P le plan médiateur de [SA].
 - a- Montrer que $B \in P$ et que $D \in P$.
 - b- En déduire que $0 \in P$.
 - c- Montrer que OS = OA = OB = OC = OD.



- a- Montrer que la droite (BD) est l'axe du cercle (C).
- b- Montrer que la droite (BD) perce le plan (SAC) en O.
- c- En déduire que 0 est le centre du cercle (%).
- d- Montrer que le triangle SAC est rectangle isocèle en S.



Annexe

<u>Figure de l'exercice 1</u>

