Exercice1 (5points)

Soit ABC un triangle équilatéral de sens direct tel que K et J sont les milieux respectifs des segments [BC] et [AC]. I est le centre de gravité de ce triangle.

1) a) Montrer qu'il existe un unique déplacement f et un unique antidéplacement g tels que

$$f(C) = g(C) = B$$
 et $f(J) = g(J) = K$

- b) Caractériser f.
- 2) On désigne par S_1 , S_2 et S_3 les symétries orthogonales d'axes respectifs (AC), (JB) et (JK). R la rotation de centre C et d'angle $(-\frac{\pi}{3})$ et h = R o f.
 - a) Déterminer h(J), caractériser h puis vérifier que $h = S_2$ o S_1 .
 - b) Montrer que $g = f \circ S_1$.
 - c) En déduire que $g = R^{-1} o S_2$.
- 3) On pose $\varphi = g \circ S_3$.
 - a) Déterminer $\varphi(J)$ puis caractériser l'application φ .
 - b) Caractériser alors g.
- 4) H est le milieu du segment [AB], $D = S_1(B)$ et F est la similitude directe qui envoie A en D et H en I.
 - a) Déterminer les éléments caractéristiques de F.
 - b) Déterminer l'image de la droite (CH) par F.
- 5) On pose F(E) = H
 - a) Montrer que *HEB* est un triangle isocèle.
 - b) Montrer que (BE) et (HJ) sont deux droites perpendiculaires puis construire le point E.
- 6) Soit l'application $G = F \circ S_{(AB)}$
 - a) Montrer que G est une similitude indirecte dont-on précisera le rapport et le centre.
 - b) C' est l'image du point C par la similitude indirecte G. Montrer que A, C et C' sont alignés.
- 7) Dans cette question on rapporte le plan au repère orthonormé direct $(K, \overline{KC}, \vec{v})$.
 - a) Déterminer l'écriture complexe de G.
 - b) En déduire une équation de l'axe Δ de G puis le construire.

Exercice2 (3.5points)

- 1) Soit $P(z) = z^3 (5+6i)z^2 + (-6+16i)z + 20+10i$, $z \in \mathbb{C}$
 - a) Calculer P(-1+i) puis déterminer les complexes a et b tels que $P(z)=(z+1-i)(z^2+az+b)$
 - b) En déduire les solutions de l'équation P(z) = 0.
- 2) Dans le plan complexe, muni d'un repère orthonormé direct $(0, \vec{u}, \vec{v})$, on considère les points A, B et C d'affixes respectives $z_1 = -1 + i$, $z_2 = 3 + i$ et $z_3 = 3 + 4i$.

Placer les points A, B, C, I et D où I est le milieu du segment [AB] et D est le barycentre des points pondérés (A, 3) et (B, 1).

- 3) Soit *H* l'hyperbole de foyers *A et B* dont *D* est un sommet.
 - a) Déterminer le centre et l'excentricité de H.
 - b) Vérifier que l'équation réduite de H dans le repère $(0, \vec{u}, \vec{v})$, s'écrit $(x-1)^2 \frac{(y-1)^2}{3} = 1$.
 - c) Déterminer le deuxième sommet, les directrices et les asymptotes de l'hyperbole H et la construire.

Exercice3 (4.5points)

PARTIE A

Soit $n \in \mathbb{N}$ et α un diviseur premier strictement supérieur à 2 de $a^{2^n} + 1$ où a est un entier premier avec α .

- 1) Soit d le plus petit entier naturel non nul vérifiant $a^d \equiv 1 \pmod{\alpha}$.
 - a/ Montrer que si k un entier naturel qui vérifie $a^k \equiv 1 \pmod{\alpha}$ alors d divise k.
 - b/ En déduire que d divise $\alpha 1$ et 2^{n+1} .
- 2) a/Montrer que $d = 2^{n+1}$.
 - b/ En déduire que $\alpha \equiv 1 \pmod{2^{n+1}}$.

PARTIE B:

On se propose de déterminer l'ensemble (A) des couples de nombres premiers p et q pour lesquels $3^p + 3^q \equiv 0 \pmod{pq}$.

Dans la suite de l'exercice on suppose que (p,q) est un élément de (A).

- 1) On suppose dans cette question que p = q.
 - a/ Justifier que *p* est impair.
 - b/ Montrer alors que p = q = 3
- 2) a/Montrer que si p = 2 alors q = 3
 - b/ Vérifier que (3,5) est un élément de (A).
- 3) On suppose dans cette question que 3 .

On pose $q - p = 2^m k$ où $(m, k) \in \mathbb{N}^2$ et k est impair.

- a/Montrer que $3^{q-p} + 1 \equiv 0 \pmod{p}$ et $3^{q-p} + 1 \equiv 0 \pmod{q}$.
- b/ Montrer alors que $q p \equiv 0 \pmod{2^{m+1}}$.
- c/ Conclure
- 4) Déterminer l'ensemble (A).

Durée: 4heur

Exercice4 (7points)

A) Pour $n \in \mathbb{N}^*$, on considère la fonction f_n définie sur \mathbb{R} par : $f_n(x) = xe^{-\frac{n}{x}}$, si $x \neq 0$ et $f_n(0) = 0$.

On note (\mathcal{C}_n) la représentation graphique de f_n dans le repère orthonormé (O, \vec{i}, \vec{j}) .

- 1) Montrer que f_n est continue et dérivable à droite en O.
- 2) Montrer que f_n est dérivable sur \mathbb{R}^* et calculer f_n '(x) pour $x \in \mathbb{R}^*$.
- 3) Calculer $\lim_{x\to +\infty} f_n(x)$, $\lim_{x\to -\infty} f_n(x)$ et $\lim_{x\to 0^-} f_n(x)$ puis dresser le tableau de variation de f_n .
- 4) Montrer que la droite $D_n: y = x n$ est une asymptote à (\mathcal{C}_n) .
- 5) Construire (\mathcal{C}_1) et (\mathcal{C}_2).
- 6) Pour x > 0, on pose $F_1(x) = \int_1^x f_1(t) dt$.
 - a) A l'aide d'une intégration par parties montrer que : $F_1(x) = \frac{1}{2}x^2e^{-\frac{1}{x}} \frac{1}{2a} \frac{1}{2}\int_1^x e^{-\frac{1}{t}}dt$
 - b) En déduire que pour $x \ge 1$ on a : $F_1(x) \ge \frac{1}{2}e^{-\frac{1}{x}}(x^2 x + 1) \frac{1}{2e}$
- **B)** 1) Montrer qu'il existe un réel unique a_n tel que : $f_n(a_n) = 1$.
 - 2) Vérifier que pour tout $n \in \mathbb{N}^*$: $a_n > 1$ et que $a_n \ln(a_n) = n$.
 - 3) Soit g la fonction définie sur $[1,+\infty]$ par : $g(x) = x \ln x$.
 - a) Montrer que g est une bijection de $[1,+\infty[$ sur un intervalle J que l'on précisera.
 - b) En déduire que $\lim_{n\to+\infty} a_n = +\infty$.
 - c) Montrer que la suite $(a_n)_{n \in \mathbb{N}^*}$ est strictement croissante.
 - d) Vérifier que pour tout $n \in \mathbb{N}^*$: $\ln(a_n) + \ln(\ln(a_n)) = \ln(n)$. En déduire que $\lim_{n \to \infty} \frac{\ln a_n}{n} = 0$.
 - e) Montrer que $f_n(a_{n+1}) = e^{\frac{1}{a_{n+1}}}$.
- C) Pour $n \in \mathbb{N}^*$, on pose $I_n = \int_{a_n}^{a_{n+1}} f_n(t) dt$, J_n la valeur moyenne de f_n sur $[a_n, a_{n+1}]$ et $S_n = \sum_{i=1}^n I_k$.
- 1) Montrer que pour tout $n \in \mathbb{N}^*$: $1 \le J_n \le e^{\frac{1}{a_{n+1}}}$.
- 2) En déduire $\lim_{n\to +\infty} J_n$ et $\lim_{n\to +\infty} S_n$.
- 3) Pour x > 0, on pose $F_n(x) = \int_{1}^{x} f_n(t) dt$ où $n \in \mathbb{N}^*$.
 - a) Montrer que F_n est dérivable sur $]0,+\infty[$ et que $F_n'(x)=f_1\left(\frac{x}{n^2}\right)$.
 - b) En déduire que pour tout x > 0: $F_n(x) = n^2 F_1\left(\frac{x}{n^2}\right) n^2 F_1\left(\frac{1}{n}\right)$.
 - c) Calculer $\lim_{x \to +\infty} F_n(x)$.