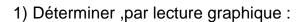
Lycée I. K. Jemmel Classe : 4^{ème}Sc1

Devoir de Synthèse n°1 Mathématiques – Durée 2h Mr : Afli Ahmed A.S : 2023/2024

Exercice 1: (3 points)

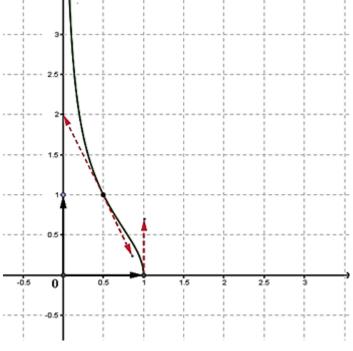
Dans la figure ci-contre , on a representé la courbe (C_f) d'une fonction f continue sur]0,1] et derivable sur]0,1[ainsi que sa

tangente en $\frac{1}{2}$



$$\lim_{x \to 1^{-}} \frac{f(x)}{x - 1} \quad \text{et} \quad f'\left(\frac{1}{2}\right).$$

- 2) a) Justifier que f réalise une bijection de]0,1] sur un intervalle J que l'on précisera.
 - b) Construire , soigneusement, sur l'annexe, $\mbox{la courbe } (C_{f^{-1}}) \mbox{ de } f^{-1}$
 - c) Montrer que f^{-1} est dérivable en 1 et calculer $(f^{-1})'(1)$.
 - d) Etudier la dérivabilité de f^{-1} à droite en 0.



Exercice 2: (6 points)

- 1) Résoudre dans \mathbb{C} l'équation (E) : $z^2 2z + 1 e^{4i\alpha} = 0$. $\alpha \in]0$; $\frac{\pi}{2}[$
- 2) Soit P(z) = $z^3 4z^2 + (5 e^{4i\alpha})z 2 + 2e^{4i\alpha}$
 - a) Vérifier que p(2) = 0
 - b) Déterminer les nombres complexes a, b et c tel que $P(z) = (z 2)(az^2 + bz + c)$.
- 3) Dans le plan complexe rapporté à un repère orthonormé $(O, \vec{u}; \vec{v})$ on considère Les points I,A,M et N d'affixes respectives :

$$z_I=1 \qquad ; \qquad z_A=2 \quad ; \qquad z_M=1+e^{2i\alpha} \quad \text{et} \qquad z_N=1-e^{2i\alpha}$$

- a) Vérifier que les points A,M et N appartiennent au cercle de centre I et de rayon 1 et que I est le milieu de [MN]
- b) Montrer que : $z_M=2cos(\alpha)e^{i\alpha}$ et $z_N=2sin(\alpha)e^{i\left(\alpha-\frac{\pi}{2}\right)}$
- c) Vérifier que $\frac{z_M}{z_N} = itan(\alpha)$ puis déduire que $\overrightarrow{OM} \perp \overrightarrow{ON}$
- d) Montrer que OMAN est un rectangle.
- e) Déterminer $\alpha \in]0$; $\frac{\pi}{2}[$ pour que OMAN soit un carré puis placer les points A,M et N pour la valeur de α trouvée.

Exercice 3: (4 points)

Soit g la fonction définie sur $[0; \frac{\pi}{2}[par:g(x) = \sqrt{\tan(x)}]$

- 1) Etudier la dérivabilité de g à droite en 0 et Interpréter le résultat graphiquement.
- 2) a) Montrer que g réalise une bijection de $[0; \frac{\pi}{2}[$ sur $[0; +\infty[$

On note g^{-1} la fonction réciproque de g.

- b) Dresser le tableau de variation de g⁻¹
- 3) a) Calculer $g^{-1}(1)$.
 - b) Montrer que g^{-1} est dérivable en 1 et calculer $(g^{-1})'(1)$
- 4) Montrer que g^{-1} est dérivable sur]0; $+\infty[$ et que $(g^{-1})'(x) = \frac{2x}{1+x^4}$.

Exercice 4: (7 points)

Soit f la fonction définie sur]- 2 ; 2] par $f(x) = \sqrt{\frac{2-x}{2+x}}$ et (C) sa courbe représentative dans un repère orthonormé (O,i,j).

- 1) a) Etudier la dérivabilité de f à gauche en 2 et interpréter graphiquement le resultat obtenu.
 - b) Montrer que pour tout $x \in]-2; 2[$ on a: $f'(x) = \frac{-2}{(x+2)^2 f(x)}$
 - c) Montrer que pour tout $x \in [0; 1]$ on a : $|f'(x)| \le \frac{\sqrt{3}}{2}$
 - d) Montrer que l'équation f(x) = x admet une unique solution α dans]-2;2] vérifier que $\alpha \in]0;1[$
- 2) a) Justifer que f admet une fonction réciproque f^{-1} définie sur un intervalle J que l'on pécisera.
 - b) Justifier, sans faire du calcul, que que f^{-1} est dérivable à droite en 0.
 - c) Montrer que $(f^{-1})'(\alpha) = \frac{-\alpha(\alpha+1)^2}{2}$
- 3) Soit la suite (U_n) définie sur IN par : $\begin{cases} U_0 = 2 \\ U_{n+1} = \ f(U_n) \ pour \ tout \ n \ \in IN \end{cases}$
 - a) Montrer que pour tout $n \in IN$; $0 \le U_n \le 1$
 - b) Montrer que pour tout $n \in IN$,on a : $|U_{n+1} \alpha| \le \frac{\sqrt{3}}{2} |U_n \alpha|$
 - c) Déduire que pour tout $n \in IN$,on a : $|U_n \alpha| \le \left(\frac{\sqrt{3}}{2}\right)^n$ puis calculer $\lim_{n \to +\infty} U_n$
- 4) Soit $V_n = \frac{1}{n} \sum_{1}^{n} f\left(\frac{k}{n^2}\right)$, pour tout $n \in IN$.
 - a) Montrer que pour tout $n \in IN$, on a : $f\left(\frac{1}{n}\right) \le V_n \le f\left(\frac{1}{n^2}\right)$
 - b) Déduire $\lim_{n\to +\infty} V_n$

Annexe

Exercice 1:

