Devoir de synthèse N°1

4^{éme} S.exp

Mathématiques

معهد أبو القاسم الشابي. تطاوين الأستاذ: محمّد الحاجّى

Exercice n°1 : (04 points) (QCM)

Pour chacune des questions suivantes une seule réponse proposée est exacte Indiquer la réponse exacte. Aucune justification n'est demandée

1°/ On considère dans $\mathbb C$ l'équation : (E): $(1+i)Z^2-ig(1+i\sqrt{3}ig)Z+\sqrt{3}+i=0$

On désigne par Z₁ et Z₂ les solutions dans C de l'équation (E)

$$arg(Z_1) + arg(Z_2) congru \grave{a}$$
: $a) \frac{\pi}{12} [2\pi]$; $b) -\frac{\pi}{12} [2\pi]$; $c) \frac{\pi}{3} [2\pi]$

a)
$$\frac{\pi}{12}[2\pi]$$

$$b) -\frac{\pi}{12}[2\pi]$$

c)
$$\frac{\pi}{3}[2\pi]$$

2°/ On considère dans \mathbb{C} l'équation : (E'): $Z^3 = 2 + 2i$

Les solutions dans $\mathbb C$ de l'équation (E') sont :

a)
$$Z_k = \sqrt[3]{2} e^{i(\frac{\pi}{4} + \frac{2k\pi}{3})}, k \in \{0, 1, 2\}$$

b)
$$Z_k = 2\sqrt{2} e^{i(\frac{\pi}{12} + \frac{2k\pi}{3})}, k \in \{0, 1, 2\}$$

c)
$$Z_k = \sqrt{2} e^{i(\frac{\pi}{12} + \frac{2k\pi}{3})}, k \in \{0, 1, 2\}$$

3°/ Soit f une fonction dérivable sur \mathbb{R} tel que pour tout $x \in \mathbb{R}$: $f'(x) = \frac{1}{1+x^2}$

et g la fonction définie sur $\left|-\frac{\pi}{2},\frac{\pi}{2}\right|$ par : g(x)=f(tan(x))

La fonction g est dérivable sur $\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$ et on a :

a)
$$g'(x) = \frac{1}{1 + tan^2(x)}$$

a)
$$g'(x) = \frac{1}{1 + tan^2(x)}$$
 ; b) $g'(x) = 1 + tan^2(x)$; c) $g'(x) = 1$

c)
$$g'(x) = 1$$

4°/ Soit (U_n) la suite définie sur N par : $U_n = \frac{2^n - 3^n}{2^n + 3^n}$

a)
$$\lim_{n\to +\infty} U_n = -\infty$$

b)
$$\lim_{n\to +\infty} U_n = 1$$

a)
$$\lim_{n\to +\infty} U_n = -\infty$$
 ; b) $\lim_{n\to +\infty} U_n = 1$; c) $\lim_{n\to +\infty} U_n = -1$

Exercice n°2: (06 points)

- I. 1) Vérifier que : $(3 i\sqrt{3})^2 = 6 6i\sqrt{3}$
 - 2) Résoudre dans C l'équation :

$$(E): Z^2 - (1 + i\sqrt{3})Z - 2 + 2i\sqrt{3} = 0$$

II. Le plan est rapporté à un repère orthonormé direct $(0, \overrightarrow{u}, \overrightarrow{v})$

On considère les points A, B et C d'affixes :

$$Z_A = 2$$
, $Z_B = -1 + i\sqrt{3}$ et $Z_C = -1 - i\sqrt{3}$

- 1) Mettre Z_B et Z_C sous forme exponentielle
- 2) Soit C le cercle de centre 0 et de rayon 2
 a-Vérifier que le cercle C est circonscrit au triangle ABC
 b-Placer le point A et construire les points B et C
- 3) a- Montrer que : $\frac{Z_C}{Z_B Z_A} = \frac{Z_A}{Z_C Z_B} = i \frac{\sqrt{3}}{3}$ b- Déduire que $(OC) \perp (AB)$ et $(OA) \perp (BC)$ c-Montrer alors que le point O est l'orthocentre du triangle ABC
- 4) a- Montrer que le triangle ABC est équilatéral b-Soit H le point d'affixe $Z_H=-1$. Vérifier que H est le milieu de [BC] c-Calculer alors l'aire du triangle ABC.

Exercice n°3: (05 points)

Soit f la fonction définie sur $]0, +\infty[$ par $: f(x) = 1 + \frac{1}{\sqrt{x}}$

On désigne par : (C_f) la courbe de f dans un repère orthonormé $(o, \vec{\iota}, \vec{j})$

- 1°) a) Calculer $\lim_{x\to 0^+} f(x)$ et interpréter graphiquement le résultat
 - b) Calculer $\lim_{x\to +\infty} f(x)$ et interpréter graphiquement le résultat
- **2°)** a) Montrer que $x \in]0, +\infty[: f'(x) = \frac{-1}{2x\sqrt{x}}]$
 - b) Dresser le tableau de variation de f sur $]0, +\infty[$
- 3°) a) Montrer que l'équation f(x) = x admet une unique solution α dans]1,2[
 - b) Vérifier que : 1, $7 < \alpha < 1.8$
 - c) Soit Δ la droite d'équation : y = x. Etudier la position de (C_f) par rapport à Δ
 - d) Tracer Δ et (C_f)

4°) Soit
$$(u_n)$$
 la suite définie sur $\mathbb N$ par : :
$$\left\{ \begin{array}{c} u_0 = \frac{3}{2} \\ u_{n+1} = f(u_n) \end{array} \right.$$

- a) Montrer, par récurrence, que pour tout $n \in IN : 1 < u_n < 2$
- b) Montrer que pour tout $x \ge 1$: $|f'(x)| \le \frac{1}{2}$
- c) Montrer que pour tout $n \in \mathbb{N}: |u_{n+1} \alpha| \leq \frac{1}{2}|u_n \alpha|$
- d) Montrer alors que pour tout $n\in\mathbb{N}$: $|u_n-\alpha|\leq (\frac{1}{2})^n\left|\frac{3}{2}-\alpha\right|$ puis déterminer $\lim_{n\to+\infty}U_n$

Exercice n°4: (05 points)

On donne la courbe d'une fonction f définie et continue sur $\mathbb R$.voir feuille annexe

- La tangente T à (C_f) au point A(0,1) passe par B(1,3)
- Δ_1 : y = 3 asymptote horizontale pour (C_f) au voisinage de $+\infty$
- Δ_2 : y = -1 asymptote horizontale pour (C_f) au voisinage de $-\infty$

1°/ Par lecture graphique:

- a) Déterminer f(0), $\lim_{x\to -\infty} f(x)$ et $\lim_{x\to +\infty} f(x)$
- b) Donner le tableau de variation de f sur $\mathbb R$
- c) Déterminer f'(0) et une équation de T
- d) Justifier que le point A(0,1) est un point d'inflexion $\operatorname{\mathsf{pour}}(\mathcal{C}_f)$
- 2°/ a) Montrer que f réalise une bijection de $\mathbb R$ sur un intervalle $\mathsf J$

que l'on précisera. (Soit f^{-1} la fonction réciproque de f)

- b) Déterminer $f^{-1}(1)$, $\lim_{x\to (-1)^+} f^{-1}(x)$ et $\lim_{x\to 3^-} f^{-1}(x)$
- c) Tracer sur la feuille annexe la droite Δ d'équation y = x et $(C_{f^{-1}})$

3°/On suppose que pour tout $x \in \mathbb{R}$: $f(x) = a + \frac{bx}{\sqrt{x^2+1}}$, (a et b deux r $\acute{e}els$)

- a) Calculer f(0) puis déduire la valeur de a
- b) Montre que $\lim_{x\to +\infty} f(x) = a+b$. puis déduire la valeur de b
- c) Donner alors l'expression de f pour tout $x \in \mathbb{R}$
- 4°/ Soit F la fonction définie sur \mathbb{R} par : $F(x) = x + 2\sqrt{x^2 + 1}$

Montrer que F est dérivable sur $\mathbb R$ et que pour tout $x \in \mathbb R$: F'(x) = f(x)

Annexe à rendre avec la copie

Nom et Prénom :

