L.P.Ibn Khaldoun Kairouan Le : 12 | 12 | 2023 Devoir de synthèse N°I Durée : 3heures Prof: Chouihi Classes: 4M

Exercice $N^{\circ}I$ (6 points)

Dans le plan orienté, on considère un losange OABC de centre Ω et de sens direct tel que $(\overrightarrow{OA}, \overrightarrow{OC}) \equiv \frac{\pi}{4} [2\pi]$. ADB est un triangle rectangle et isocèle en A de sens direct, On désigne par I le point d'intersection des bissectrices du triangle ADB. (voir figure sur la feuille à remettre).

- 1/a) Montrer qu'il existe un unique déplacement R tel que R(B) = D et R(C) = A
 - b) Montrer que R est une rotation de ceotre O et d'angle $\frac{-\pi}{4}$
- 2/ On pose $f = R_{(B,\frac{\pi}{4})} o R_{(A,\frac{\pi}{2})}$
 - a) Quelle est la nature de f?
 - b) Construire le point A' = f(A).
 - c) En décomposant chacune des deux rotations en deux symétrie orthogonales d'axes convenablement choisis, montrer que f est une rotation de centre I et d'angle $\frac{3\pi}{4}$
- 3/ On pose g = foR
 - a) Déterminer g(B) puis caractériser g.
 - b) Montrer que le triangle BCA' est rectangle isocèle en B.
 - c) Montrer que les points C, I et A' sont alignés.
- 4/ On pose $h = RoS_{(AC)}$
 - a) Déterminer h(B) et h(C).
 - b) Montrer que h est une symétrie glissante.
 - c) On pose $\Omega' = h(\Omega)$. Montrer que Ω' est le milieu du segment [OD].
 - d) Déterminer la forme réduite de h.

Exercice $N^{\circ}2$ (4points)

Le plan complexe P est rapporté à un repère orthonormé direct $(0, \overrightarrow{OA}, \overrightarrow{OB})$, α est un réel de $]0,2\pi[$ et \mathscr{C} est le cercle de centre B et de rayon 1.

- I. 1/ Résoudre dans \mathbb{C} , l'équation : $z^2 i(2 e^{i\alpha})z + e^{i\alpha} 1 = 0$
 - 2/ Ecrire sous forme exponentielle les solution de cette équation.
- II. Soit f l'application de $P\setminus\{B\}$ vers $P\setminus\{A\}$ qui à tout point M d'affixe z associe le point M' d'affixe z'= $\frac{\overline{z}-i}{\overline{z}+i}$
 - 1/a/Montrer que f n'a pas de point invariant.
 - b/ Vérifier que pour tout $z \in \mathbb{C} \setminus \{i\}$, on $a : z' 1 = \frac{-2i}{\bar{z} + i}$
 - c/ En déduire que pour tout $M \in P \setminus \{B\}$, on a : AM'.BM = 2 et $(\overrightarrow{BM}, \overrightarrow{AM'}) \equiv -\frac{\pi}{2}[2\pi]$
 - d/ Construire le point M' à l'aide d'un point M de &.
 - 2/ Soit (E) l'équation dans $\mathbb{C} : (\bar{z} i)^3 = \frac{\sqrt{2}}{2} (-1 + i)(\bar{z} + i)^3$
 - a/ Montrer que si z est une solution de (E) alors z est réel.
 - b/ Montrer que : $z' = e^{i\alpha} \iff z = -\cot(\frac{\alpha}{2})$
 - c/ Résoudre alors l'équation (E)
 - d/ Utiliser de ce qui précéde pour construire le point Ω antécédent par f du point Ω ' d'affixe $\omega' = \frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}$

Soit f la fonction définie sur]-1,1[par : $f(x) = -1 + \frac{x}{\sqrt{1-x^2}}$.

- A. 1) Etudier les variations de f.
 - 2) Déduire que f réalise une bijection de]-1,1[sur un intervalle J que l'on précisera.
 - 3) Construire dans un même repère orthonormé, les courbes C et C' respectivement de f et f⁻¹.
 - 4) Expliciter $f^{-1}(x)$, $x \in J$.
- **B.** Soit h la fonction définie sur]-1,1[par : $h(x) = f(-\sin(\frac{\pi}{2}x))$.
- 1) a) Vérifier que $h(x) = -1 \tan(\frac{\pi}{2}x)$; $x \in]-1,1[$.
 - b) Montrer que h admet une fonction réciproque g définie sur IR.
 - c) Montrer que g est dérivable sur IR et que g'(x) = $\frac{-2}{\pi[(x+1)^2+1]}$
- 2) Soit φ la fonction définie sur IR* par : $\varphi(x) = g(x-1) + g(\frac{1}{x}-1)$
 - a) Montrer que φ est dérivable sur chacun des intervalles]- ∞ ,0[et]0, + ∞ [et déterminer φ '(x).
 - b) Calculer $\varphi(1)$ et $\varphi(-1)$. En déduire que pour tout x > 0, $\varphi(x) = -1$, et que pour tout x < 0, $\varphi(x) = 1$.
- 3) Soit V et W les suites définies sur IN* par : $V_n = \sum_{k=1}^n \left[g(\frac{1}{k}) + g(\frac{-1}{k})\right]$ et $W_n = \frac{V_n}{n}$.
 - a) Donner la valeur de $\varphi(1 + \frac{1}{k})$; $k \in IN^*$.
 - b) En déduire que $g(\frac{1}{k}) + g(\frac{-1}{1+k}) = -1$; $k \in IN^*$
 - c) Montrer que pour tout $n \in IN^*$; $V_n = -n g(\frac{-1}{n+1})$.

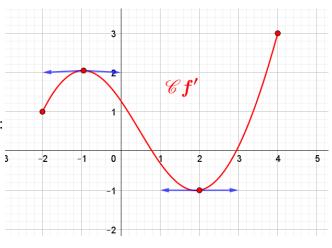
En déduire que la suite W est convergente et donner sa limite.

Exercise $N^{\circ}4$ (4 points)

A. Sur la figure ci-contre on a représenté graphiquement une partie de la courbe de la fonction dérivée f' d'une fonction f deux fois dérivable sur IR et vérifiant f(-1) = 2 et f(2) = -1.

En utilisant le graphique, justifier les propositions suivantes :

- 1/ la fonction f admet deux extrémums.
- 2/ La courbe de f admet au moins deux points d'inflexions.
- 3/ Pour tout $x \in [-1,3]$, $-x+1 \le f(x) \le 2x+4$.
- 4/ Pour tout $x \in [-2,4]$, $|f(x) + 1| \le 3|x 2|$
- 5/ Il existe au moins $c \in]-2,4[$ tel que : $f''(x) = \frac{1}{3}$



B. Soit f et g deux fonctions continues sur [a,b] et dérivables sur]a,b[et tel que pour tout $x \in$]a,b[, $g'(x) \neq 0$ Montrer qu'il existe au moins $c \in$]a,b[tel que : $\frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f'(c)}{g'(c)}$.

