Lycée : Mohamed Ali Profs : Fourati Ali Derbel Louati Nada

Devoir de synthèse N°1

Épreuve : Mathématiques

Date: 16/03/2024 Classe: 3^{ième} Tech

Durée : 2 h

Exercice 1: (5pts)

On donne dans le plan complexe $\mathscr P$ rapporté à un repère orthonormé direct $(0; \vec u; \vec v)$ les trois points A; B et C d'affixes respectives $z_A = 1 + i\sqrt{3}; z_B = iz_A$ et $z_C = z_A + z_B$

 $1^{\bullet}/a$ - Ecrire z_A sous la forme trigonométrique

b- En déduire une écriture trigonométrique de z_R

2°/ **a-** Montrer que $(\overrightarrow{OA}; \overrightarrow{OB}) \equiv \frac{\pi}{2} [2\pi]$

b- En déduire que le triangle OAB est rectangle et isocèle en O.

3º/ a- Montrer que OACB est un carré.

b- Tracer un repère $(0; \vec{u}; \vec{v})$ et placer les points A; B et C

4°/a- Ecrire sous la forme algébrique le nombre complexe z_c

b- En déduire $\cos \frac{7\pi}{12}$ et $\sin \frac{7\pi}{12}$

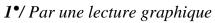
5°/ Soit l'ensemble $\mathcal{E} = \left\{ M(z); z \in \mathbb{C} \text{ tel que } \left| \frac{z-1-i\sqrt{3}}{z+\sqrt{3}-i} \right| = 1 \right\}$

a- Vérifier que $0 \in \mathcal{E}$

b- Montrer que $\mathcal{E}=(0C)$

Exercice 2: (4pts)

Dans la figure ci-contre on a tracé \mathcal{E}_f la courbe représentative d'une fonction f dérivable sur \mathbb{R} , et les tangentes au points d'abscisses 0; 1; 3 et 5. La courbe admet des branches paraboliques au voisinage de $(+\infty)$ et au voisinage de $(-\infty)$



- **a-** Déterminer $\lim_{x \to -\infty} f(x)$ puis $\lim_{x \to -\infty} \frac{f(x)}{x}$
- **b-** Déterminer f'(0).
- **c-** Déterminer les extremum de f.

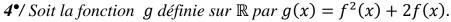
2°/ Dresser le tableau de variation de f (y-compris le signe de f'(x))

3°/La courbe \mathcal{C}_f est symétrique par rapport la droite Δ : x = 3

a- Montrer que pour tout réel x, on a :

$$f'(x) = -f'(6-x)$$

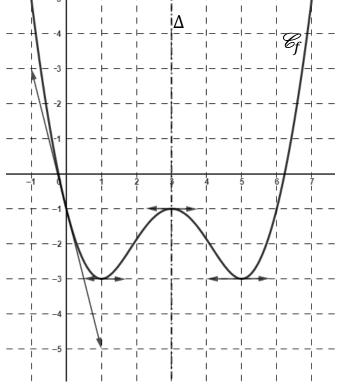
b- On déduire f'(6).



a- Déterminer la limite de g en $(+\infty)$ et en $(-\infty)$

b- Montrer que g est dérivable sur \mathbb{R} et écrire g' en fonction de f et f'.

c- Dresser le tableau de variation de la fonction g.



Exercice 3: (6pts)

Soit la fonction f définie sur $\mathbb{R} \setminus \{2\}$ par $f(x) = \frac{x^2 - 2x + 1}{x - 2}$

On désigne par \mathscr{C}_f la courbe représentative de la fonction f dans un repère orthogonal $(0; \vec{\iota}; \vec{\jmath})$

- 1°/a- Calculer: $\lim_{x\to 2^-} f(x)$ et $\lim_{x\to 2^+} f(x)$ Interpréter graphiquement les résultats obtenus. b- Calculer: $\lim_{x\to -\infty} f(x)$ et $\lim_{x\to +\infty} f(x)$.
- **c-** Montrer que la droite Δ : y = x est une asymptote à \mathcal{C}_f au voisinage de $(+\infty)$ et au voisinage $de(-\infty)$.
- **2°**/Etudier la position \mathscr{C}_f par rapport la droite Δ
- **3°/a-** Montrer que f est dérivable sur $\mathbb{R} \setminus \{2\}$ et que $f'(x) = \frac{x^2 4x + 3}{(x-2)^2}$.
 - **b-** *Dresser le tableau de variation de la fonction f*
 - **c-**Tracer \mathscr{C}_f
- **4°**/ Soit la fonction g définie par $g(x) = \frac{|x-1|(x-1)}{|x-1|-1}$ et \mathscr{C}_g sa courbe représentative dans le même repère
 - a- Déterminer l'ensemble de définition de g
 - **b-** Montrer que le point I(1;0) est un centre de symétrie de \mathscr{C}_q
 - **c-** Justifier que les deux courbes \mathscr{C}_f et \mathscr{C}_g sont confondues sur $[1;2[\ \cup\]2;+\infty[$
 - **d-** En déduire une construction de \mathscr{C}_q à partir de \mathscr{C}_f

Exercice 4: (5pts)

Dans l'espace muni d'un repère Cartésien $(0, \vec{t}, \vec{j}, \vec{k})$ on considère les points A(1, -1, -1), B(2,1,3), et C(0,3,1).

- 1°/ On donne la droite Δ définie par la représentation paramétrique Δ : $\begin{cases} x = 3 + 2\alpha \\ y = 2 + \alpha \\ z = 4 + 2\alpha \end{cases}$
 - **a-** Déterminer un point D et un vecteur directeur \overrightarrow{u} de la droite Δ .
 - **b-** Vérifier que les deux droites (AB) et Δ ne sont pas parallèles.
- **2º/a-** Déterminer une représentation paramétrique de la droite (AB).
 - **b-** Montrer que les deux droites (AB) et Δ sont non coplanaires.
- **3º**/ Déterminer une équation cartésienne du plan (ABC)
- **4**[•]/ On donne (ABC): 2x + y z 2 = 0
 - **a-**Vérifier que la droite Δ et le plan (ABC) sont sécants.
 - **b-** Si Δ perse le plan (ABC) en un point E. Calculer les coordonnées de E.