Exercice 1 (4 points)

Dans la figure ci-dessous :

- Γ est la courbe représentative d'une fonction f.
- Les droites d'équations respectives : y=2, x=-2, x=0 et $y=\frac{1}{2}x$ sont des asymptotes à la courbe Γ.



Par une lecture graphique:

- a Déterminer l'ensemble de définition de f.
 - $\text{Déterminer}: \lim_{x \to -\infty} f(x), \quad \lim_{x \to +\infty} \frac{f(x)}{x}, \quad \lim_{x \to -\infty} \frac{2024}{f(x) 2} \text{ et } \lim_{x \to +\infty} 2f(x) x + 1.$
- 2 Montrer que la fonction $\frac{1}{f}$ est prolongeable par continuité en 0.
- Dresser le tableau de variation de f.

Exercice 2 (7 points)

Soit g la fonction définie sur $\mathbb{R}\setminus\{-5,1\}$ par : $g(x)=\begin{cases} \frac{x^3-1}{x^2+4x-5} & \text{si } x\leq 2\\ \sqrt{x^2+5}-2 & \text{si } x>2 \end{cases}$

Et on désigne par \mathscr{C}_g sa courbe représentative dans un repère orthonormé $(0, \overrightarrow{i}, \overrightarrow{j})$.

- ullet La fonction g est-elle prolongeable par continuité en 1? justifier la réponse .
 - b Montrer que g est continue en 2.
 - \square Prouver que g est continue sur $]-\infty,2]\setminus\{-5,1\}$ et sur $]2,+\infty[$.
- 2 Montrer que l'équation g(x) = 2 admet au moins une solution α dans l'intervalle]3, 4[.
- a Justifier que la droite d'équation x = -5 est une asymptote verticale à la courbe \mathcal{C}_q .
 - b Vérifier que pour tout $x \in]-\infty, 2] \setminus \{-5, 1\}$, on a : $g(x) = x 4 + \frac{21x 21}{x^2 + 4x 5}$.
 - $lue{c}$ En déduire que \mathscr{C}_g admet au voisinage de $-\infty$ une asymptote oblique que l'on déterminera.

d Montrer que : $\lim_{x\to +\infty} g(x) - x + 2 = 0$ puis interpréter graphiquement cette limite.

Exercice 3 (4 points)

Le plan est rapporté à un repère orthonormé direct $(O, \overrightarrow{u}, \overrightarrow{v})$. Soient les points A, B et C définis par :

- A est de coordonnées cartésiennes $(-1, \sqrt{3})$.
- B est de coordonnées polaires $\left[2, \frac{\pi}{6}\right]$.
- $\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{OB}$.
 - 1 Déterminer les coordonnées polaires de A et les coordonnées cartésiennes de B.
 - **b** Construire les points A, B et C.
 - 2 a Justifier que : $(\overrightarrow{OB}, \overrightarrow{OA}) \equiv \frac{\pi}{2} [2\pi]$.
 - **b** En déduire que le quadrilatère *OBCA* est un carré .
 - 3 a Vérifier que : $\overrightarrow{OC} = (\sqrt{3} 1)\overrightarrow{u} + (\sqrt{3} + 1)\overrightarrow{v}$.
 - b Montrer que le point C a pour coordonnées polaires $\left[2\sqrt{2}, \frac{5\pi}{12}\right]$.
 - \bigcirc En déduire la valeur exacte de $\sin\left(\frac{5\pi}{12}\right)$.

Exercice 4 (5 points)

Le plan est orienté dans le sens direct .

Dans l'annexe ci-jointe :

- ABC est un triangle rectangle et isocèle en C tel que : $(\overrightarrow{CA}, \overrightarrow{CB}) \equiv \frac{\pi}{2} [2\pi]$.
- ACD est un triangle équilatéral direct .
- BCE est un triangle isocèle en B tel que : $(\overrightarrow{BE}, \overrightarrow{BC}) = -\frac{16\pi}{3} [2\pi]$.
 - $\frac{1}{3}$ est-elle une mesure de l'angle orienté $(\overrightarrow{\overrightarrow{BE},\overrightarrow{BC}})$? justifier la réponse.
 - 2 Déterminer la mesure principale de : $(\overrightarrow{BE}, \overrightarrow{BC})$; $(\overrightarrow{AB}, \overrightarrow{BE})$ et $(\overrightarrow{CB}, \overrightarrow{CE})$.
 - (3) Montrer que les points C, D et E sont alignés.
 - 4 a Construire les points F et G tels que : $(\overrightarrow{AD}, \overrightarrow{AF}) \equiv \frac{\pi}{6} [2\pi]$ et $(\overrightarrow{DC}, \overrightarrow{DG}) \equiv \frac{\pi}{3} [2\pi]$.
 - b Prouver que les droites (AF) et (DG) sont perpendiculaires.
 - Soit \mathscr{C} le cercle circonscrit au triangle ABC et N un point de l'arc \widehat{AB} prive des points A et B. Montrer que : $(\widehat{NB}, \widehat{NC}) \equiv \frac{\pi}{A}[2\pi]$.

Épreuve : Mathématiques

Annexe : à rendre avec la copie

Nom et Prénom :Classe :Classe :

