LYCEE MONGI SLIM SFAX

电影电影电影电影电影

PROF: Mrs ► ♦ ♦ CHAFIK ► ♦ ♦ HICHEM CHAKROUN ♦ ♦ ◀

ANNEE SCOLAIRE ♦♦ 2022& 2023 ♦♦

♦♦ DEVOIR DE SYNTHESE N°1 ♦♦

CLASSE ++ 4ème MATHEMATIQUES++ |++ Durée 3h ++ |++ Date 12 -12- 2022++

EXERCICE N°1 (5 pts)

I)Résoudre dans \Box l'équation $(E_{\theta}): Z^2 - (1+2e^{i\theta})Z + e^{i\theta} + e^{i2\theta} = 0$, $\theta \in \left[0, \frac{\pi}{2}\right]$

- II) Le plan complexe **P** est rapporté à un repère orthonormé direct $\mathscr{R}(o, \overrightarrow{u}, \overrightarrow{v})$ on considère les points M et N d'affixes respectives $Z_M=1+e^{i\theta}$, $Z_N=i+e^{i\theta}$, $\theta\in\left[0,\frac{\pi}{2}\right]$
- 1) a) Déterminer et représenter l'ensemble des points M lorsque θ varie dans $\left[0, \frac{\pi}{2}\right]$
 - b) Montrer que le point N est l'image du point M par une translation T que l'on précisera
 - c) Déterminer et représenter alors l'ensembles des points N lorsque θ varie dans $\left[0,\frac{\pi}{2}\right]$
- 2) a) Déterminer la forme exponentielle de Z_M et Z_N
 - b) En déduire que $(\overrightarrow{OM}, \overrightarrow{ON}) = \frac{\pi}{4} [2\pi]$
- 3) On pose $d(\theta)=OM^2+ON^2$
 - a) Vérifier que $\det(\overrightarrow{OM}, \overrightarrow{ON}) = \sqrt{2}\cos(\theta \frac{\pi}{4}) + 1$
 - b) Déduire que $d(\theta)=4+2\sqrt{2}\cos(\theta-\frac{\pi}{4})$
 - c) Déterminer alors la valeur maximale de $d(\theta)$

EXERCICE N°2 (5 pts)

Soit f la fonction définie sur $\left[-\frac{\pi}{4}, \frac{3\pi}{4}\right]$ par $f(x) = \frac{\sin x}{\cos x + \sin x}$ et (%) sa représentation graphique dans un plan muni d'un repère orthonormé (O, i, j).

- 1) a) Vérifier que pour tout $x \in \Box$, $\cos x + \sin x = \sqrt{2}\cos(x \frac{\pi}{4})$. En déduire que pour tout réel $x \in \left[-\frac{\pi}{4}, \frac{3\pi}{4} \right] \quad \cos x + \sin x > 0$
 - b) Justifier que f est dérivable sur $\left[-\frac{\pi}{4}, \frac{3\pi}{4} \right]$ et que $f'(x) = \frac{1}{(\cos x + \sin x)^2} = \frac{1}{1 + \sin(2x)}$
 - c) Dresser le tableau de variation de f
- 2) a) Montrer que f admet une fonction réciproque f -1 définie sur un intervalle J que l'on précisera

1

b) Justifier que f⁻¹ est dérivable sur J et que et que (f⁻¹)'(x) = $\frac{1}{x^2 + (x-1)^2}$

3) Soit T la tangente à (\mathscr{C}) au point $I(\frac{\pi}{4}, \frac{1}{2})$

a) Vérifier que pour tout $x \in \left] -\frac{\pi}{4}, \frac{3\pi}{4} \right[$ et que $f''(x) = \frac{-2\cos(2x)}{\left(1 + \sin(2x)\right)^2}$

b) Montrer que I est un point d'inflexion de (8)

c) Montrer que pour tout $x \in \left] \frac{\pi}{4}, \frac{3\pi}{4} \right[$, il existe $c \in \left] \frac{\pi}{4}, x \right[$ tel que $f(x) - f(\frac{\pi}{4}) = (x - \frac{\pi}{4})f'(c)$

d) Montrer que (\mathscr{C}) est au-dessus de T sur $\left]\frac{\pi}{4}, \frac{3\pi}{4}\right[$

4) Tracer alors T et (%) dans l'annex 1

EXERCICE N°3 (5 pts)

A) On considère la suite (U_n) définie sur \mathbb{N}^* par $U_n = n \left(\frac{1}{4}\right)^n$

1) Montrer que pour tout $n \in \square * U_{n+1} \le \frac{1}{2}U_n$

2) Montrer alors que $\lim_{n\to +\infty} U_n = 0$

B) Soit f la fonction définie sur $\Box \setminus \{1\}$ par $f(x) = \frac{x^{n+1} - 1}{x - 1}$ pour $n \in \Box *$

1) a) Calculer f'(x) pour tout $x \in \Box \setminus \{1\}$

b) Justifier que pour tout $x \in \Box \setminus \{1\}$, $f(x) = 1 + x + x^2 + x^3 + \dots + x^n$

c) En déduire que pour tout $x \in \square \setminus \{1\}$ et pour tout $n \in \square *$

$$1 + 2x + 3x^{2} + 4x^{3} + \dots + nx^{n-1} = \frac{nx^{n+1} - (n+1)x^{n} + 1}{(x-1)^{2}}$$

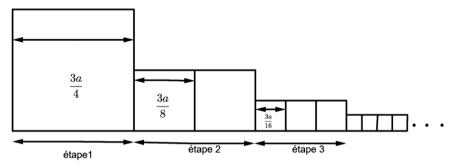
3) Soit la suite (S_n) définie sur $\square * par S_n = \sum_{k=1}^n k \left(\frac{1}{4}\right)^{k-1}$

a) Exprimer (S_n) en fonction de n

b) En déduire que $\lim_{n\to+\infty} S_n = \frac{16}{9}$

4) On effectue la construction d'une série des carrés de la manière suivante Soit $n \in \mathbb{N}^*$

à chaque étape n on construit n carrés identiques de côté égale à la moitié du côté d'un carré de l'étape n-1



On désigne par \mathcal{A}_k la somme des aires des carrés obtenue à la $k^{\text{ème}}$ étape

- a) Calculer $A_1 + A_2 + A_3$ en fonction de a
- b) Montrer que $\lim_{n\to+\infty} \sum_{k=1}^n \mathcal{A}_k = a^2$

EXERCICE N°4 (5 pts)

Dans la figure ci-dessous dans <u>l'annexe 2</u> on donne

ABC un triangle équilatéral direct de centre O. I et J sont les milieux respectifs des segments [AB] et [BC] et D le symétrique de B par rapport à la droite (AC). On note Δ la médiatrice du segment [CD]

On se propose de déterminer l'ensemble Γ des isométries qui envoi A sur B et B sur C.

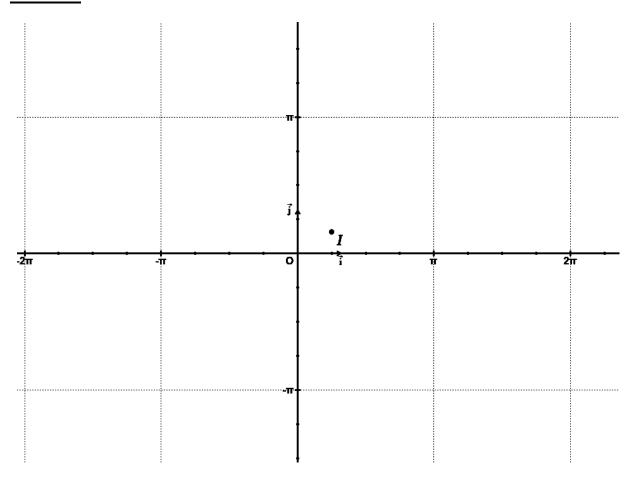
- 1) a) Caractériser $S_{(IC)}oS_{\Delta}$ et $S_{\Delta}oS_{(AJ)}$
 - b) Caractériser alors $t_{\overline{AB}} oR_{(A,\frac{2\pi}{3})}$

Soit f un élément de Γ et $\mathbb E$ l'ensemble des points invariants par f

- 2) Montrer que f ne peut être ni une symétrie orthogonale ni une translation
- 3) Montrer que si $\mathbb{E} \neq \emptyset$ alors f est une rotation dont on précisera le centre et l'angle
- 4) on suppose que $\mathbb{E} = \emptyset$
 - a) Justifier que f est une symétrie glissante
 - b) Soit $g = t_{\overrightarrow{BA}} \circ f$ Déterminer g(A) et g(B)
 - c) Montrer que g est une symétrie orthogonale dont on précisera l'axe
- 5) Conclure que $\Gamma = \left\{ R_{(O,\frac{2\pi}{3})}, t_{\overrightarrow{AB}} oS_{(AC)} \right\}$
- 6) Soit M un point du plan. On désigne par $M' = R_{\left(0, \frac{2\pi}{3}\right)}(M)$ et $M'' = t_{\overrightarrow{AB}} \circ S_{(AC)}(M)$
 - a) Caractériser $t_{\overline{AB}}oS_{(AC)}oR_{(O,\frac{-2\pi}{3})}$
 - b) Montrer que JM' = JM''

Feuille rendre avec la copie
Nom et Prénom classe

ANNEXE 1



ANNEXE 2

