(2023/2024)

EXERCICE 1: (4 points)

1) On considère a, b, x et y des réels strictement positifs.

Montrer que si
$$\frac{x}{y} = \frac{a}{b}$$
 alors $\frac{y^2}{y^2 + x^2} + \frac{a^2}{a^2 + b^2} = 1$.

2) Soit α un angle aigu non nul .

Montrer que
$$\frac{1}{1+\cos(\alpha)} + \frac{1}{1-\cos(\alpha)} = \frac{2}{\sin^2(\alpha)}$$

- 3) Montrer que pour tout réels a et b on a : $(acos(\alpha) + bsin(\alpha))^2 \le a^2 + b^2$
- 4) On considère trois réels a , b et c vérifiant : a+b+c=0. Montrer que $2a^3+2b^3+2c^3=6abc$.

EXERCICE 2 : (5 points)

On considère l'expression $A = (x^2 - 1)^3$ où x désigne un nombre réel .

- 1) Calculer la valeur exacte de *A* pour $x = 1 + \sqrt{2}$.
- 2) A l'aide de la calculatrice donner l'arrondi au centième de A pour x = 0.0035.
- 3) a) Développer l'expression A .
 - b) En déduire que pour tout réel x, $x^6 1 = (x 1)(x + 1) \left[(x^2 1)^2 + 3x^2 \right]$.
- 4) a) Montrer que pour tout réel x, on a $(x^2 1)^2 + 3x^2 > 0$.
 - b) Exercise l'ensemble $J = \{x \in IR \ tel \ que \ x^6 \ge 1\}$ sous forme d'une réunion d'intervalles.

EXERCICE 3: (4 points)

Soient x et y deux nombres réels positifs tels que : $-\frac{x}{2} - 1 \le x - 2 \le -\frac{x}{2} + 1$ et $1 \le (2y - 1)^2 - 3 \le 6$

- 1) Montrer que $\frac{2}{3} \le x \le 2$ et $\frac{3}{2} \le y \le 2$
- 2) Encadrer alors $A = \frac{-2\sqrt{xy+5}}{x^2-y+2}$.

EXERCICE 4 : (7 points)

Dans la figure ci-dessous , on a tracé un triangle ABC isocèle en A tel que $\widehat{BAC}=36^\circ$ et BC = 4 La bissectrice de \widehat{ABC} coupe le segment [AC] en D.

- 1) a) Montrer que le triangle ABD est isocèle.
 - b) Montrer que AD = 4.
- 2) Soit I le milieu de [AB]. Montrer que $AB = 8\cos(36^{\circ})$.
- 3) Le cercle de diamètre [BD] recoupe (AC) en K.
 - a) Montrer que K est le milieu de [DC]
 - b) Montrer que $CD = 8\cos(72^{\circ})$.
 - c) En déduire que : $cos(36^\circ) cos(72^\circ) = \frac{1}{2}$
- 4) Soit J le milieu de [BC]. Montrer que $\cos(36^\circ)\cos(72^\circ) = \frac{1}{4}$.
- 5) a) Vérifier que $(a + b)^2 (a b)^2 = 4ab$.
 - b) Calculer $cos(36^\circ) + cos(72^\circ)$.
 - c) Montrer alors que : $\cos(36^\circ) = \frac{1+\sqrt{5}}{4}$.

