3ème Sciences 1

Avril 2007 A. LAATAOUI

Exercice n°1: (4 points)

1. Calculer les limites suivantes :

$$\lim_{x \to 0} \frac{1 - \cos 2x}{x \sin x} \text{ et } \lim_{x \to 0} \frac{\sin^2 x + \cos x - 1}{x^2}.$$

2. On pose
$$f(x) = \sin\left(2x - \frac{\pi}{4}\right)$$
.

Calculer
$$f\left(\frac{\pi}{4}\right)$$
 et $f'\left(\frac{\pi}{4}\right)$. En déduire $\lim_{x \to \frac{\pi}{4}} \frac{2\sin\left(2x - \frac{\pi}{4}\right) - \sqrt{2}}{4x - \pi}$.

Exercice n°2: (7 points)

On considère la fonction f définie sur \mathbb{R} , par : $f(x) = \cos 2x + \sin 2x$.

1. a) Montrer que pour tout réel
$$x$$
, on a : $f(x) = \sqrt{2} \cos \left(2x - \frac{\pi}{4}\right)$.

b) Préciser la période de f . En déduire son domaine d'étude.

2. Résoudre dans
$$[0,\pi]$$
 chacune des équations : $f(x) = 0$ et $f'(x) = 0$.

3. a) Dresser le tableau de variation de f sur $[0,\pi]$.

b) Tracer
$$\zeta_f$$
, la courbe représentative de f , pour $x \in [-\pi, \pi]$ dans un repère orthogonal (O, \vec{i}, \vec{j}) .

4. On pose pour tout réel x, $g(x) = \sin 2x - 2\sin^2 x$.

a) Montrer que pour tout réel x, g(x) = f(x) - 1.

b) Tracer alors ζ_g dans le même repère que ζ_f pour $x \in [-\pi, \pi]$.

Exercice n°3: (9 points)

Dans l'espace rapporté à un repère orthonormé (O, i, j, k), on considère les points A(1,1,1), B(1,-2,-2) et C(3,1,0).

1. a) Montrer que les points A, B et C ne sont pas alignés.

- b) Montrer que le vecteur $\vec{n} = \vec{i} 2\vec{j} + 2\vec{k}$ est un vecteur normal du plan $\mathcal{F} = (ABC)$.
- c) Déterminer alors une équation cartésienne du plan ${\mathscr T}$

2. Soit ${\mathscr D}$ la droite perpendiculaire à ${\mathscr P}$ en A

Déterminer une représentation paramétrique de la droite \mathscr{D}

- 3) Soient E(4,0,3) et \mathcal{O} le plan passant par E et parallèle à \mathcal{P} .
 - a) Déterminer une équation cartésienne du plan \mathcal{Q} .
 - b) Vérifier que la droite \mathcal{D} est perpendiculaire au plan \mathcal{Q} .
 - c) Calculer les coordonnées du point H intersection du plan $\mathcal Q$ et la droite $\mathcal G$.
 - d) En déduire la distance du point E à la droite \mathcal{D} .

4. Soit
$$\Delta$$
 la droite de l'espace définie par Δ :
$$\begin{cases} x = 4 + 2t \\ y = 3t ; t \in \mathbb{R}. \\ z = 3 + 2t \end{cases}$$

- a) Montrer que Δ est incluse dans \mathcal{Q} .
- b) Montrer que Δ et ${\mathscr D}$ ne sont pas coplanaires.