Date: 21/01/2012

Exercice 1 (5 points)

Pour chacune des questions suivantes une seule réponse est exacte l'élève indiquera sur sa copie le numéro de la question et la lettre correspondante à la réponse choisie. Aucune justification n'est demandée.

1) On donne $x^2 = 1$, $y^2 = 2$ et $xy = \sqrt{2}$ alors:

a)
$$(x - y)(x + y) = 3$$

b)
$$(x - y)^2 = 2$$

a)
$$(x - y)(x + y) = 3$$
 b) $(x - y)^2 = 2$ c) $(x + y)^2 = 3 + 2\sqrt{2}$

2) $(3-\sqrt{3})^3 =$

a)
$$54 - 30\sqrt{3}$$

b)
$$27 - 3\sqrt{3}$$

b)
$$27 - 3\sqrt{3}$$
 c) $54 + 30\sqrt{3}$

3) Pour tout angle aigu α on a :

a)
$$cos^2(\alpha) - sin^2(\alpha) = 1$$

a)
$$cos^2(\alpha) - sin^2(\alpha) = 1$$
 b) $cos^2(\alpha) + sin^2(\alpha) = \alpha^2$ c) $cos(\alpha) = sin(90^\circ - \alpha)$

c)
$$cos(\alpha) = sin(90^{\circ} - \alpha)$$

4) ABC est un triangle rectangle en B tel que AB = 3 et BC = 4 alors :

a)
$$\cos(\hat{A}) = \frac{3}{5}$$

a)
$$\cos(\hat{A}) = \frac{3}{5}$$
 b) $\sin(\hat{A}) = \frac{3}{5}$ c) $\tan(\hat{A}) = \frac{3}{4}$

c)
$$\tan(\hat{A}) = \frac{3}{4}$$

5) Soit $A(x) = 8x^3 - 1$ alors

a)
$$A(x) = (2x + 1)^3$$

b)
$$A(x) = (2x + 1)(4x^2 - 2x + 1)$$

a)
$$A(x) = (2x + 1)^3$$
 b) $A(x) = (2x + 1)(4x^2 - 2x + 1)$ c) $A(x) = (2x - 1)(4x^2 + 2x + 1)$

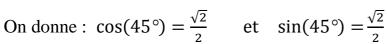
Exercice 2 (5 points)

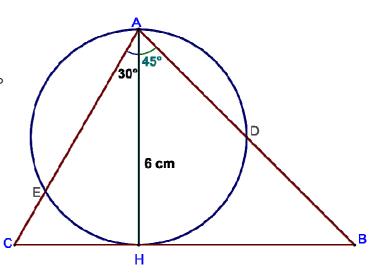
Dans la figure ci-contre ABC est un triangle de hauteur [AH] tel que AH = 6, $\widehat{BAH} = 45^{\circ}$ et $\widehat{HAC} = 30^{\circ}$

- 1) Calculer, AC et BC.
- 2) Le cercle de diamètre [AH] coupe (AB)

en D et (AC) en E.

Calculer AD et AE





Exercice 3 (4 points)

Soit un angle aigu, on pose:

$$A(x) = \frac{1}{1 - \cos(x)} + \frac{1}{1 + \cos(x)}$$

- 1) Montrer que $A(x) = \frac{2}{\sin^2(x)}$
- 2) On donne A(x) = 4
 - a) Déterminer $sin^2(x)$
 - b) En déduire la valeur exacte de x.

Exercice 4 (6 points)

On donne
$$A = 2 - \sqrt{3}$$
, $B = 7 - 4\sqrt{3}$, $C = \sqrt{3} - 1$ et $D = \frac{7 - 4\sqrt{3}}{2 - \sqrt{3}}$

- 1) Calculer A^2 puis en déduire que D = A.
- 2) Calculer C^2 , C^3 et B^2 .
- 3) Vérifier que $\frac{1}{B} \frac{4}{A} = -1$
- 4) Montrer que : $4\sqrt{4-2\sqrt{3}} + \sqrt{97-56\sqrt{3}}$ est un entier naturel.