Lycée El Amel Fouchana

Devoir de contrôle n°02

Prof: B. Zouhaier

4 ème Sc 1

Février 2015

Durée: 2heures

Exercice n°1(4points):

Cocher la bonne réponse

La figure ci-contre est celle d'un cube ABCEFGH d'arête 1

1. \overrightarrow{AB} . \overrightarrow{AC} est égal à

a)
$$\frac{\sqrt{2}}{2}$$
 ; b)1 ; c) $\sqrt{2}$

$$; c)\sqrt{2}$$

2. $\overrightarrow{AB} \wedge \overrightarrow{AC}$ est égal à

a)
$$\overrightarrow{AE}$$
 ; b) \overrightarrow{EA} ; c) $\frac{\sqrt{2}}{2}\overrightarrow{AE}$

3. Le volume du tétraèdre ABDE est :

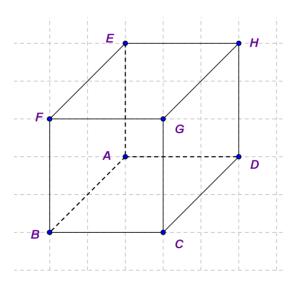
a)
$$\frac{1}{6}$$

a)
$$\frac{1}{6}$$
 ; b) $\frac{\sqrt{2}}{6}$; c) $\frac{1}{3}$

4. Les droites (FD) et (EC) sont :

a) Parallèles ; b) sécantes ;

c) non coplanaires



Exercice n 2(6points):

Dans l'espace est rapporté à un repère orthonormé direct $(0, \vec{i}, \vec{j}, \vec{k})$, on considère l'ensemble (S) des points M(x, y, z) de l'espace tels que $x^2 + y^2 + z^2 - 2x + 2y - 1 = 0$

- 1. Montrer que (S) est la sphère de centre le point I(1, -1, 0) et de rayon $\sqrt{3}$
- 2. Soit Δ la droite passant par le point A(0,0,3) et de vecteur directe $\vec{u} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$
 - a)Donner un système d'équations paramétriques de la droite Δ
 - b)Calculer la distance du point I à la droite Δ . En déduire la position relative de (S) et Δ
- 3. Soit B le point de coordonnées (3, 0, 0) et P le plan d'équation : x+y+z-3=0a) Vérifier que le point $B \notin \Delta$ et $B \in P$
 - b)Montrer que $\Delta \subset P$
 - c)Prouver que le plan P est tangent à la sphère (S)

Exercice n • 3(5points):

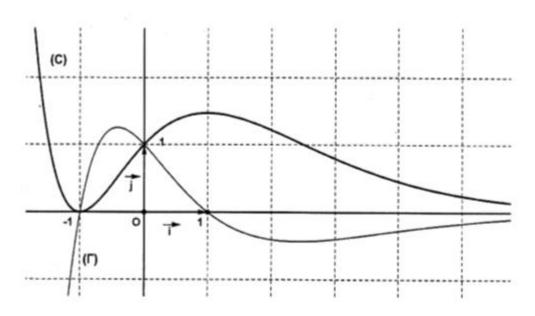
Soit f la fonction définie sur [1; $+\infty$ [par $f(x) = 1 + \sqrt{x-1}$ et (*C*) sa courbe représentative dans un repère orthonormé

- 1. a)Etudier la dérivabilité de f à droite en 1 et interpréter graphiquement le résultat b)Prouver que f est dérivable sur]1; $+\infty$ [et calculer f'(x)
 - c)Dresser le tableau de variation de f
- 2. a)Calculer $\lim_{x\to+\infty} \frac{f(x)}{x}$. Interpréter graphiquement le résultat b)Tracer (C)

- 3. a)Montrer que f réalise une bijection de [1; +∞[sur [1; +∞[b)Montrer que f⁻¹(x) = x² 2x +2 pour tout x ∈ [1; +∞[c)Résoudre l'équation f(x) = x et tracer dans le même repère la courbe (C') de f⁻¹
- 4. Soit $I = \int_{1}^{2} |x^{2} 3x + 2| dx$ a)Interpréter graphiquement le réel I b)Calculer I

Exercice n°4 (5points):

On a représenté ci-dessous, dans un repère orthonormé (O,\vec{i},\vec{j}) , les courbes (C) et (Γ) , représentative d'une fonction f définie et dérivable sur IR et de sa fonction dérivée f'.



- 1. Reconnaitre la courbe représentative de f et celle de f'
- 2. Déterminer f(0), f'(0), f(-1)et f'(-1)
- 3. Calculer l'aire \mathcal{A} de la partie du plan limitée par la courbe de f', l'axe des abscisses et les droites d'équations x = -1 et x = 0
- 4. Soit (U_n) la suite définie sur IN* par Un = $\int_0^1 x^n f'(x) dx$
 - a)A l'aide d'une intégration par partie montrer que $U_1 = f(1) \int_0^1 f(x) dx$
 - b)Montrer que (U_n) est décroissante
 - c)Montrer que $0 \le U_n \le \frac{1}{n+1}$ pour tout $n \in IN^*$
 - d)Déduire que (Un) est convergente et calculer sa limite

Bon travail