Lycée Said Boubaker Moknine

Devoir de contrôle n°2

Prof: Naija Yosra

Niveau : 4 sciences expérimentales

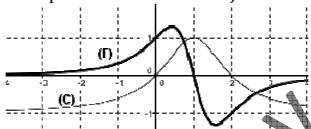
Epreuve : Mathématiques

Durée : 2h / date: 10/2/2014

Exercice 1: (3 points)

Soit f une fonction continue sur [-4,4] et F une primitive de f sur [-4,4]

Les courbes données ci-dessous représentent les fonctions f et F dans un repère orthonormé.



1) Identifier la courbe de f et celle de F.

2) On admet que la fonction G définie sur [-4,4] par $G(x) = \frac{2}{x^2 - 2x + 2}$ est une primitive de f

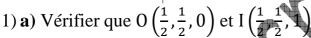
a) Déterminer F(x)

b) Expliciter f(x)

Exercice 2: (6 points)

On considère le cube *ABCDEFGH* ci-contre. Soit 0 et l'es centres respectifs des carrés ABCD et EFGH. L'espace est muni du repère orthonormé

direct (A, \overrightarrow{AB} , \overrightarrow{AD} , \overrightarrow{AE}). Pour tout réel α différent de 1, on note $M\left(\frac{\alpha}{2}, \frac{\alpha}{2}, \alpha\right)$



b) Déterminer l'ensemble des points M de l'espace lorsque α décrit $\mathbb{R}\setminus\{1\}$

2) a) Montrer qu'une équation du plan (EBO) est : x + y + z - 1 = 0

b) Calculer l'aire du triangle EBO

c) Pour quelle valeur de α la distance de M au plan (EBO) est –elle égale à $\frac{\sqrt{3}}{3}$?

d) En déduire le volume du tétraèdre AEBO

3) Déterminer les valeurs de α pour que le volume du tétraèdre *EBOM* soit égal à $\frac{1}{4}$

Exercice 3: (5 points)

Soit f la fonction définie sur [0,1[par $f(x) = \sqrt{\frac{x}{1-x}}$

1) Montrer que f admet sur [0,1[une unique primitive F qui s'annule en 0

2) On considère la fonction g définie sur $\left[0, \frac{\pi}{2}\right[\operatorname{par} g(x) = F(\sin^2 x) \right]$

a) Montrer que g est dérivable sur $\left[0, \frac{\pi}{2}\right]$

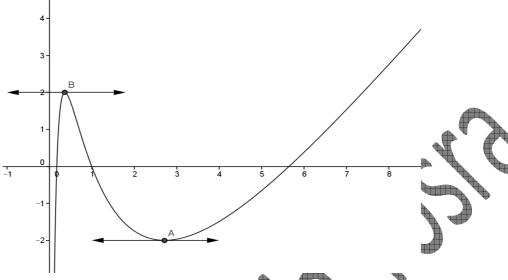
b) Prouver que pour tout réel x de $\left[0, \frac{\pi}{2}\right] g'(x) = 1 - \cos(2x)$

c) En déduire g(x) pour tout réel x de $\left[0, \frac{\pi}{2}\right]$

d) Calculer $F\left(\frac{1}{2}\right)$

Exercice 4: (6 points)

Soit f la fonction définie sur $]0, +\infty[$ par $f(x) = ln^3x - 3 \ln x$ et (C) une partie de sa courbe représentative dans un repère orthonormé $(0, \vec{\iota}, \vec{j})$ donnée ci-dessous



- 1) a) Calculer $\lim_{x\to 0^+} f(x)$, $\lim_{x\to +\infty} f(x)$ et $\lim_{x\to +\infty} \frac{f(x)}{x}$
 - b) Interpréter graphiquement les résultats obtenus
 - c) Calculer f'(x) pour tout réel x de $]0, +\infty$
 - d) En déduire les valeurs exactes des coordonnées des points A et B de (C)
 - 2) Soit *g* la restriction de f sur $[e, \infty[$
- a) Par lecture graphique, montrer que g admet une fonction réciproque g^{-1} définie sur $[-2, +\infty[$
- b) Déterminer $\lim_{x \to +\infty} \frac{g^{-1}(x)}{x}$ et $\lim_{x \to -2^+} \frac{g^{-1}(x) 6}{x + 2}$
- 3) a) Montrer que pour tout entier naturel n non nul l'équation $g(x) = \frac{1}{n}$ admet dans $[e, +\infty[$ une unique solution qu'on note α_n
- b) Montrer que la suite $(\alpha_n)_{n>0}$ est décroissante
- c) Prouver que la suite (α_n) est convergente vers un réel l que $l \in \]5$, 6[