L. Regueb	Mathématiques	Classe: 4èmeM
Prof : Salhi Noureddine	Devoir de Contrôle№2	Le : 12/02/2010 Durée : 2h

Exercice1(4pts)

Pour chacune des propositions suivantes une et une seule réponse est correcte ; noter sur votre copie le numéro de la question et la lettre correspondante à la bonne réponse.

Le plan est rapporté à un repère orthonormé $(O, \overline{i}, \overline{j})$.

1) La parabole de foyer F(2,0) et de directrice D: x = -2 a pour équation :

a)
$$y^2 = 4x$$

b)
$$x^2 = 8y$$

c)
$$y^2 = 8x$$

2) Soit V le volume du solide obtenu par révolution autour de l'axe (Ox) du domaine compris entre l'axe des abscisses et la courbe d'équation $y = \sqrt{R^2 - x^2}$ sur [-R,R] R>0.Alors:

a)
$$V = \pi R^2$$

b)
$$V = \frac{4\pi R^3}{3}$$
 ; c) $V = \frac{2\pi R^2}{3}$

c) V =
$$\frac{2\pi R^2}{3}$$

3) Soit f une fonction dérivable sur $\left[-1,1\right]$ et $I=\int_0^1 f(t)dt+\int_0^1 tf'(t)dt$.

a)
$$I = f(1)$$

b)
$$I = f(1) - f(0)$$
;

c)
$$I = f(1) + f(0)$$
.

4) Dans la figure ci-contre on a représenté les courbes d'équations respectives :

$$y = x^2 \text{ et } y = 8 - x^2 , x \in [-2,2].$$

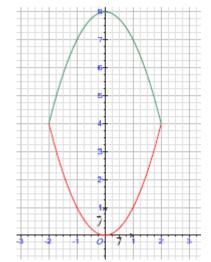
On note A l'aire en cm² de la partie du plan comprise entre les deux courbes.

Alors:

a)
$$A = 32$$

b)
$$A = 32 - \frac{16}{3}$$

c)
$$A = \frac{64}{3}$$



Exercice2(5pts)

Le plan P est rapporté à un repère orthonormé (O, \vec{i}, \vec{j}) . Soit (D) la droite d'équation y-3=0, le point F(-4,6) et (H) l'ensemble des points M du plan de coordonnées (x,y)tel que : d(M,F) = 2d(M,(D)).

- 1) Montrer qu'une équation cartésienne de (H) est : (H) : $x^2 3y^2 + 8x + 12y + 16 = 0$.
- 2) Préciser la nature de (H) et ses éléments caractéristiques.
- 3) Construire (H).

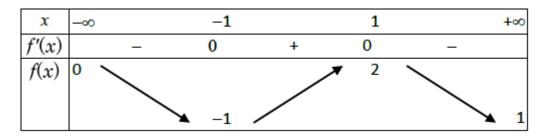
Exercice3(5pts)

Dans le plan orienté, on donne le triangle ABC tel que AB=2 , $AC=1+\sqrt{5}$ et $(\overrightarrow{AB},\overrightarrow{AC}) \equiv \frac{\pi}{2}[2\pi]$.

- 1)Soit S la similitude directe qui transforme B en A et A en C. Déterminer le rapport et une mesure de l'angle de S.
- 2) On appelle Ω le centre de 5. Montrer que Ω appartient au cercle de diamètre [AB] et à la droite (BC). Construire le point Ω .
- 3) On note D l'image du point C par la similitude S.
 - a) Démontrer que les points A , Ω et D sont alignés ainsi que les droites (CD) et (AB) sont parallèles. Construire le point D.
- b) Montrer que CD = $3+\sqrt{5}$.

Exercice4(6pts)

On donne le tableau de variations d'une fonction f définie et dérivable sur \Box telle que f(0) = 0.



On définit la fonction F qui, à tout réel x , associe $F(x) = \int_0^x f(t)dt$.

- 1) Déterminer le sens de variation de F.
- 2) Montrer que : $1 \le F(2) \le 4$.
- 3) Montrer que pour tout réel $x \ge 1$, $F(x) \ge x 1$. En déduire la limite de F en $+\infty$.
- 4) Soit g la fonction définie sur $[0, +\infty[par : g(x) = \int_0^{x^2} f(t)dt]$.
 - a) Dresser le tableau de variations de g .
 - b) Montrer que la courbe représentative de g, admet au voisinage de $+\infty$, une branche parabolique dont on précisera la direction.