Lycée Pilote 15 octobre 1963 - Bizerte

Prof: Mme Bayoudh

Devoir de contrôle n°2

Mathématiques

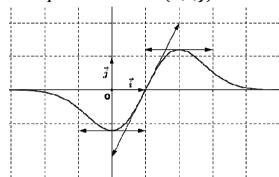
Classe :3^{ème} Maths,

février 2014

Durée: 2 heures

Exercice 1: (4points)

Dans le graphique ci-dessous, on a tracé la courbe représentative d'une fonction f dans un repère orthonormé $(\mathbf{0}, \vec{\mathbf{l}}, \vec{\mathbf{j}})$.



1) Répondre par vrai ou faux en justifiant.

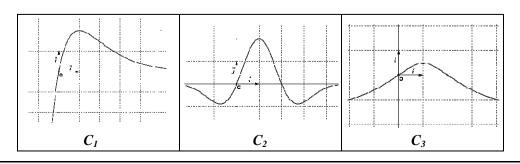
a/
$$f'(0,5) < f'(3)$$

$$b/\lim_{h\to 0} \frac{f(1+h)}{h} = 2$$

c/
$$\lim_{x\to 2} \frac{xf(2)-2f(x)}{x-2} = f(2)$$

d/ Soit F une fonction dérivable sur IR telle que F' = f. F admet dans IR deux extrema locaux .

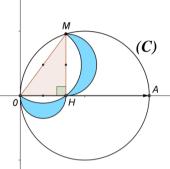
2) Une seule des trois courbes ci-dessous est la représentation graphique de la fonction f', déterminer laquelle en justifiant.



Exercice 2: (4points)

Dans la figure ci-contre :

- (C) est un cercle de diamètre [OA]
- M est point variable du cercle (C)
- H est le projeté orthogonale de M sur[OA]



• On a tracé trois demi-cercles de diamètres respectifs les trois côtés du triangle OMH pour obtenir deux lunules.

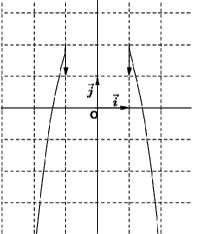
On se propose de déterminer la position du point M sur le cercle (C) pour que la somme des aires des deux lunules soit maximale.

- 1) Montrer que la somme des aires des deux lunules est égale à l'aire du triangle rectangle *OMH*.
- 2) On munit le plan du repère orthonormé $R = (\mathbf{0}, \vec{\imath}, \vec{\jmath})$ tel que $\overrightarrow{OA} = \vec{\imath}$ On désigne par (x, y) le couple de coordonnées de M dans R. a/Ecrire une équation cartésienne du cercle (C).
 - b/ Déduire que $MH = \sqrt{x x^2}$
 - c / Déterminer alors l'aire du triangle OMH.
- 3) On considère la fonction f définie sur [0,1] par : $f(x) = \frac{x}{2}\sqrt{x-x^2}$
 - a/ Etudier la dérivabilité de f à droite en 0 et à gauche en 1.
 - b/Calculer f'(x) pour $x \in]0,1[$
 - b/ Dresser le tableau de variation de f
 - c/ Déduire la position du point M pour laquelle la somme des aires des deux lunules est maximale. http://mathematiques.kooli.me/

Exercice 3: (6points)

A) La courbe ci-dessous est la représentation graphique dans un repère orthonormé $(0,\vec{i},\vec{j})$ de la fonction g définie sur $]-\infty,-1] \cup [1,+\infty[$

par $g(x) = 2 - x^2 \sqrt{x^2 - 1}$.



- 1) Calculer $g(\sqrt{2})$ et $g(-\sqrt{2})$
- 2) Par une lecture graphique :
- a/ Déterminer le domaine dérivabilité de g.
- b/ Déterminer $\lim_{x\to 1^+} \frac{g(x)-2}{x-1}$ et $\lim_{x\to -1^-} \frac{g(x)-2}{x+1}$
- c/ Déterminer le signe de g(x) pour $x \in]-\infty, -1] \cup [1, +\infty[$
- B) Soit f la fonction définie sur $]-\infty, -1] \cup [1, +\infty[$ par :

$$f(x) = \frac{2\sqrt{x^2-1}}{x} - x + 1.$$

Soit Cf sa courbe représentative dans le repère $(0, \vec{\iota}, \vec{j})$.

- 1) a/ Etudier la dérivabilité de f à droite en 1 et à gauche en (-1) Interpréter les résultats.
 - b/ Calculer $\lim_{x\to +\infty} f(x)$ et $\lim_{x\to -\infty} f(x)$.
 - c/ Montrer que la droite Δ : y=-x+3 est une asymptote à Cf au voisinage de $(+\infty)$ et que la droite Δ' : y=-x-1 est une asymptote à Cf au voisinage de $(-\infty)$.
- 2) a/Montrer que pour tout $x \in]-\infty, -1[\cup]1, +\infty[, f'(x) = \frac{g(x)}{x^2\sqrt{x^2-1}}]$

b/ Dresser le tableau de variation de f.

Exercice 4: (6points)

Dans le plan orienté dans le sens direct, on considère un triangle équilatéral direct ABC. On désigne par I, J et K les milieux respectifs des côtés [AB], [BC] et [AC].

- 1) a/Montrer qu'il existe une unique rotation R qui transforme I en C et B en J.
 - b/Préciser l'angle de R et construire le centre Ω de R.
 - c/ Montrer que Ω , B, C et I sont situés sur un même cercle .
 - d/Soit E le symétrique de I par rapport à B.

Montrer que R(E) = B

- 2) Soit R' la rotation d'angle $\alpha \in]-\pi, 0[$ telle que R'oR'(K) = B et R'oR'(A) = J
 - a/Déterminer le centre et l'angle de la rotation R'.
 - b / Construire $\Omega' = R'(\Omega)$ et montrer que $(\Omega\Omega')$ est tangente à Γ .
- 3) Soit M un point variable du plan. On désigne par :

$$M_1 = R(M) \text{ et } M_2 = R'(M)$$

a/Montrer que si M est distinct de I et de Ω alors :

$$\left(\widehat{\overrightarrow{M\Omega},\overrightarrow{MI}}\right) \equiv \left(\widehat{\overrightarrow{MM}_1,\overrightarrow{MM}_2}\right) [2\pi]$$

b/ En déduire le lieu géométrique du point M lorsque les points M, M_1 et M_2 sont alignés.