Lycée Filote 15 octobre 1963 - Bizerte

Classe:4^{ème} Sciences experimentales,

Prof: Mme Bayoudh

Durée : 2 heures

Devoir de contrôle n° 1 en mathématiques

Date : 28/10/2014

• Exercice 1 : (3points)

Répondre par vrai ou faux à chacune des propositions suivantes, en justifiant la réponse.

		Vrai	Faux
1)	$\lim_{x \to -\infty} \frac{1 - 3x}{\sqrt{x^2 + 1}} = -3$		
2)	L'ensemble des points M d'affixe z telle que $ z - i = z + 2i $ est		
	une droite parallèle à l'axe des réelles.		
3)	Soit z un nombre complexe d'argument $\frac{\pi}{2}$ alors $ i + z = 1 + z $		

• Exercice 2:(6 points)

Soit f la fonction définie sur IR par : $f(x) = \begin{cases} \frac{3x + \sin x}{x - 1} & \text{si } x \leq 0 \\ x \sin \frac{\pi}{2x} & \text{si } x > 0 \end{cases}$

- 1) a/Montrer que f est continue en 0 b/Montrer que $\lim_{x \to +\infty} f(x) = \frac{\pi}{2}$.
- 2) a/ Montrer que pour tout $x \le 0$, $|f(x) 3| \le \frac{4}{1-x}$. b/ Déduire $\lim_{x \to -\infty} f(x)$.
- 3) Montrer que l'équation $f(x) = \frac{1}{2}$ admet au moins une solution dans $\left[-1, -\frac{1}{2}\right]$.
- 4) Soit g la fonction définie sur \mathbb{R} par $g(x) = \sqrt{x^2 + 3} x 1$

a/ Calculer $\lim_{x\to-\infty} fog(x)$

b/ Calculer $\lim_{x\to +\infty} g(x)$

c/ Montrer que la fonction g est strictement décroissante sur \mathbb{R} . Déduire $g(\mathbb{R})$.

• Exercice 3:(5 points)

Le plan est rapporté à un repère orthonormé direct $(0, \vec{u}, \vec{v})$. Soit $\theta \in \left]0, \frac{\pi}{2}\right[$.

- 1) a/Vérifier que $1 + 2i\sin(2\theta)e^{2i\theta} = e^{4i\theta}$.
 - b/ Résoudre dans \mathbb{C} , l'équation : $2z^2 2z i\sin(2\theta)e^{2i\theta} = 0$
 - c/ Ecrire les solutions sous formes exponentielles.
- 2) On donne les points $E(-i\sin\theta.e^{i\theta})$ et $F(\cos\theta.e^{i\theta})$.

a/ Calculer EF.

- b/ En déduire que [EF] est un diamètre d'un cercle fixe que l'on précisera.
- 3) A tout point M d'affixe $z \neq 0$, on associe le point M' d'affixe z' tel que $z' = 1 \frac{1}{\bar{z}}$ a/Montrer que l'affixe du point F' est $z_{F'} = -itan\theta$
 - b/ En déduire l'ensemble des points F' lorsque θ varie dans $\left[0, \frac{\pi}{2}\right]$.

Exercice 4:(6 points)

Le plan est rapporté à un repère orthonormé direct $(0, \vec{u}, \vec{v})$.

Soit f l'application du plan **P** privé du point O dans **P**qui, à tout point M du plan d'affixe $z \neq 0$, associe le point M' d'affixe z' définie par : $z' = z + i - \frac{1}{z}$

On considère les points A, B et C d'affixes respectives : a = i, $b = e^{i\frac{\pi}{6}}$ et c = -iOn désigne par A' et B' les images respectives de A et B par f, d'affixes respectives a' et b'.

- 1) a/ Montrer que le point C est l'unique point invariant par *f* b/ Calculer *a*' et *b*'.
 - c/ Montrer que $\frac{-b}{b'-b} = \frac{\sqrt{3}}{3}i$. En déduire la nature du triangle *OBB*'.
- 2) Soit (E) l'ensemble des points du plan **P** privé du point O qui ont pour image par f le point O. a/Résoudre dans $\mathbb C$, l'équation $z^2 + iz 1 = 0$ b/Déduire que les points de (E) appartiennent au cercle Γ de centre O et de rayon 1.
- 3) Soit θ un réel.
 - a/Montrer que si $z = e^{i\theta}$ alors $z' = (2\sin\theta + 1)i$
 - b/ En déduire que si M appartient au cercle Γ alors M' appartient au segment [A'C]

Bon travail et bonne chance

http://mathematiques.kooli.me/