Mathématiques

Lycée Ibn Sina Menzel Bourguiba

Devoir de contrôle n°1

3 ème \mathcal{T}_4

samdi :02-11-2013

Durée: 120 minutes

Prof: WALID Jebali

Exercice1:(4points)

Répondre par Vrai ou Faux en justifiant

1) La suite une terme général: $u_n = (n+1) - (n+2)$ est arithmétique.

2)
$$\lim_{n \to +\infty} \frac{1 - \left(\frac{2}{3}\right)^n}{2n+1} = 0$$

3) la mesure principale de l'angle orienté $(\vec{u}, \vec{v}) = -\frac{132\pi}{5} [2\pi]$ est $: (-\frac{2\pi}{5})$

4) la fonction définie sur $IR \setminus \{2\}$ par : $f(x) = \frac{1}{x^2 - 4}$ est paire

Exercice 2 : (5points)

1) Calculer les limites suivantes : $\lim_{x \to +\infty} \left(-3x^7 + 2x^3 - 1 \right)$

 $\lim_{x \to -\infty} \frac{x^4 - 4x - 1}{x - 2x^3}$

2) Soit f la fonction définie par : $f(x) = \frac{x^2 - 2x + 1}{|x - 1|} + 2x$

a) Déterminer le domaine de définition de f

b) Déterminer $\lim_{x \to 1^+} f(x)$ et $\lim_{x \to 1^-} f(x)$

3) Soit g la fonction définie par : $g(x) = \sqrt{x^2 + 1} - x$

a) Déterminer le domaine de définition de g

b) Montrer que pour $x \in D_g$ on a : $g(x) = \frac{1}{\sqrt{x^2 + 1} - x}$

c) Calculer alors $\lim_{x \to +\infty} g(x)$ et $\lim_{x \to -\infty} g(x)$

Exercice 3:(4points)

Soit A et B deux points du plan tel que : AB = 2

On considère les points C , D et E tel que $(\overrightarrow{AB}, \overrightarrow{AC}) = \frac{9\pi}{4} [2\pi]$; $(\overrightarrow{AC}, \overrightarrow{AD}) = \frac{5\pi}{12} [2\pi]$ et

$$(\overrightarrow{AB}, \overrightarrow{AE}) \equiv \frac{53\pi}{3} [2\pi]$$

http://mathematiques.kooli.me/

- 1) Déterminer la mesure principale de chacun des angles $(\overrightarrow{AB}, \overrightarrow{AC})$ et $(\overrightarrow{AB}, \overrightarrow{AE})$
- 2) Construire les points C , D et E avec : AC = AD = 4 et AE = 2
- 3) Donner une mesure de l'angle $(\overrightarrow{AC}, \overrightarrow{AE})$
- 4) Montrer que A ,D et E sont alignées
- 5) En déduire la valeur de $\cos(x)$ et $\sin(x)$ pour $x = \frac{9\pi}{4}$ et $x = \frac{53\pi}{3}$

Exercice 4: (4points)

Les 3 questions sont indépendantes.

1) Etablir les formules suivantes

$$1 + \cos \alpha = 2\cos^2 \frac{\alpha}{2}$$
 et $1 - \sin \alpha = 2\sin^2 \frac{\alpha}{2}$

et
$$1 - \sin \alpha = 2\sin^2 \frac{\alpha}{2}$$

- 2) a) Justifier les égalités suivantes : $\cos\left(\frac{\pi}{10}\right) = \sin\left(\frac{4\pi}{10}\right)$ et $\cos\left(\frac{2\pi}{10}\right) = \sin\left(\frac{3\pi}{10}\right)$
 - b) En déduire : $\cos^2\left(\frac{\pi}{10}\right) + \cos^2\left(\frac{2\pi}{10}\right) + \cos^2\left(\frac{3\pi}{10}\right) + \cos^2\left(\frac{4\pi}{10}\right) = 2$
- 3) Simplifier: $\sin(-x) + \sin(\pi x) + \sin(\pi + x)$

Exercice5:(3points)

Soit f la fonction définie sur IR par : $f(x) = x^4 - 2x^2$

- 1) Montrer que f est paire
- 2) Soient a et b deux réels distincts
 - a) Montrer que : $\frac{f(b)-f(a)}{b-a} = (b+a)(b^2+a^2-2)$
 - b) En déduire le sens de variation de f sur chacun des intervalles : $\begin{bmatrix} 0,1 \end{bmatrix}$ et $\begin{bmatrix} 1,+\infty \end{bmatrix}$