Ministère de l'éducation	Devoir de contrôle n°3	Mr. FATNASSI BECHIR
Lycée secondaire de Korba	Durée deux heures	4. Tech . Le 24 .04. 2018

Exercice n°1: (3 pts)

Pour chacune des questions suivantes une seule des réponses proposées est exacte. Indiquer le numéro et la lettre correspondants à la réponse choisie. Aucune Justification n'est demandée

Question 1:

Soit A et B deux évènement indépendants tels que p(A) = 0.5 et p(B) = 0.5 alors $p(A \cup B) = 0.5$

a / 0,75

b / 1

c/ 0,5

Question 2:

On considère l'intégrale $I = \int_1^e \frac{1}{x\sqrt{1 + \ln(x)}} dx$ alors I est égale à :

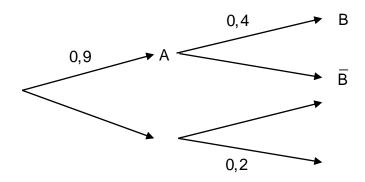
a/ e-1

b/ $\sqrt{2}$

c/ $2\sqrt{2}$ - 2

Question 3:

On représente une expérience aléatoire par l'arbre de probabilité si dessous :



Alors p(A/B)=

a/ $\frac{9}{1}$

b/ $\frac{11}{25}$

c/ $\frac{3}{25}$

Exercice n°2: (5 pts)

Soient les intégrales suivantes :

$$I = \int_0^1 \frac{dx}{\sqrt{x^2 + 2}} \qquad ; \quad J = \int_0^1 \frac{x^2}{\sqrt{x^2 + 2}} \, dx \quad \text{ et } \quad J = \int_0^1 \sqrt{x^2 + 2} \, dx$$

Soit f la fonction définie sur [0 ; 1] par : $f(x) = ln(x + \sqrt{x^2 + 2})$.

- 1°) a. Montrer que f est dérivable sur [0 ; 1] et calculer sa dérivée f'(x).
 - **b.** En déduire la valeur de l.
- 2°) a. Sans calculer J et K vérifier que J+2I=K
 - **b.** Montrer que $K = \sqrt{3}$ J
 - c. En déduire les valeurs de J et K.

Exercice n°3: (7 pts)

- II) Soit f la fonction définie sur IR par : $f(x) = \frac{2e^x 1}{e^x + 1}$. On désigne par (C_f) sa courbe représentative dans un repère orthonormé (O, \vec{i}, \vec{j})
- 1°) a. Calculer $\lim_{x \to x} f(x)$ et interpréter graphiquement le résultat obtenu.
 - **b.** Calculer $\lim_{x \in -x} f(x)$ et interpréter graphiquement le résultat obtenu.
 - c. Dresser le tableau de variation de f.
 - **d.** Montrer que l'équation : f(x) = x admet une seule solution α ; vérifier que 1,25 < α < 1,75
- 2°) a. Montrer que le point I_{g}^{∞} , $\frac{1}{2}\frac{\ddot{o}}{\ddot{e}}$ est un centre de symétrie pour (C_f)
 - **b.** Ecrire une équation de la tangente (T) à (C_f) au point $I_{\frac{1}{2}}^{\infty}$, $\frac{1}{2} \frac{\ddot{o}}{\ddot{b}}$.
 - **c.** Soit la fonction g définie sur IR par : $g(x) = f(x) \frac{3}{4}x \frac{1}{2}$ Montrer que g est strictement décroissante sur IR. Calculer g(0) et déduire la position relative de (C_f) et (T).
- 3°) Tracer (T) et (C_f)
- 4°) a. Montrer que f réalise une bijection de IR sur l'intervalle]- 1, 2 [
 - **b.** Tracer la courbe (C') de la fonction réciproque f^{-1} .
 - **c.** Expliciter $f^{-1}(x)$ pour tout $x \hat{1} 1, 2$
- 5°) a. Vérifier que pour tout réel x on a : $f(x) = \frac{3e^x}{e^x + 1} 1$
 - **b.** Calculer, en unité d'aire, l'aire de la partie du plan limitée par (C_f) et l'axe des abscisses et les droites d'équations : x = 0 et x = 1.

Exercice n°4: (5 pts)

On considère une urne U_1 contenant quatre boules blanches numérotées 0, 0, 1, 2 et deux boules noires numérotées 1, 2. Toutes les boules sont indiscernables au toucher.

1°) On tire simultanément et au hasard deux boules.

Calculer la probabilité des évènements suivants :

- A<< Obtenir une seule boule noire >>
- B^{<<} Obtenir deux boules dont le produit des numéros inscrits sur les boules tirées est nul^{>>}
- C^{<<} Obtenir une seule boule noire sachant que la somme des deux numéros inscrits sur les boules tirées est nul^{>>}
- **2°)** Soit X l'aléa numérique qui à chaque tirage de deux boules associe la somme des numéros inscrits sur les boules tirées.
 - a. Déterminer la loi de probabilité de X.
 - b. Calculer son espérance mathématique et sa variance.
 - c. Définir sa fonction de répartition F et la tracer dans un repère orthogonal
- **3°)** On dispose maintenant d'une pièce de monnaie parfaite et d'une urne U₂ contenant trois boules blanches et deux noires .

On considère l'épreuve suivante : on lance la pièce de monnaie.

- · Si on obtient face on tire simultanément et au hasard deux boules de U₁.
- $^{\cdot}$ Si on obtient pile , on tire successivement et sans remise deux boule de U $_2$
- a. Calculer la probabilité de l'évènement H^{<<} Obtenir une seule boule blanche^{>>}
- b. Sachant que les deux boules tirées sont blanches , quelle est la probabilité d'obtenir pile