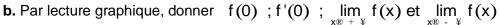
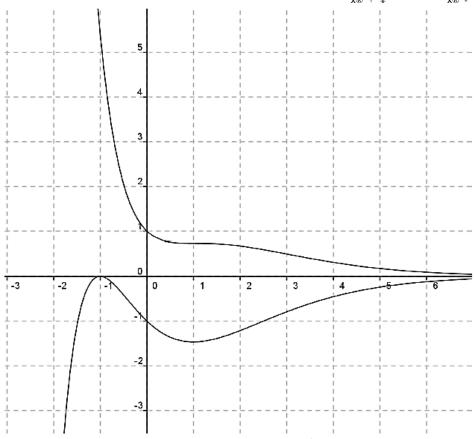
Ministère de l'éducation	Devoir de contrôle n°3	Mr. FATNASSI BECHIR
Lycée secondaire de Korba	Durée deux heures	4. Tech . Le 18 .4. 2017

Exercice n°1: (6 pts)

On a représenté ci-dessous , dans un repère orthonormé $\left(O,\vec{i},\vec{j}\;\right)$, les courbes $\left(C\right)$ et $\left(\Gamma\right)$ représentatives d'une fonction f définie et dérivable sur IR et de sa fonction dérivée f' **1°/ a.** En justifiant votre réponse reconnaitre les courbes représentatives de f et celle de f'





2°/ La fonction f est définie IR sur par $f(x)=(x^2+1)e^{-x}$

- a. Calculer $\lim_{x \oplus + \frac{1}{4}} f(x)$ et $\lim_{x \oplus \frac{1}{4}} f(x)$
- **b.** Montrer que $f'(x) = -(x-1)^2$.e^{-x} et dresser le tableau de variation de f.

3°/ Soit α un réel strictement positif.

- \bm{a} . Calculer l'aire de la partie du plan limité par la courbe de f ' ,l'axe des abscisses et les droites d'équations : x=0 et $x=\alpha$
- ${\bf b}$. Par une double intégration par parties , calculer $\int_0^\alpha x e^{-\,x}\,\,dx\,$ et montrer que :

$$\int_0^{\alpha} f(x) dx = -(\alpha^2 + 2\alpha + 3)e^{-\alpha} + 3$$

c . Soit $A(\alpha)$ l'aire de la partie du plan limitée par les courbes C; Γ et les droites d'équations $\mathbf{x} = \mathbf{0}$ et $\mathbf{x} = \mathbf{\alpha}$.

Calculer $A(\alpha)$ en fonction de α puis calculer $\lim_{x \otimes + X} A(\alpha)$

Exercice n°2: (6 pts)

Soit U la suite réelle définie sur IN* par : $\begin{cases} U_1 = 1 \\ U_{n+1} = \frac{n+1}{2n} U_n \quad ; \quad n \ge 1 \end{cases}$

- **1°/ a /** Montrer par récurrence que, pour tout $n \ge 1$: $U_n > 0$
 - **b** / Montrer que U est une suite décroissante.
 - c / Déduire que U est convergente et calculer sa limite
- **2°/** On considère la suite V définie sur IN* par $V_n = \frac{U_n}{n}$
 - **a /** Montrer que V est une suite géométrique de raison $\frac{1}{2}$.
 - **b** / Exprimer V_n en fonction de n. En déduire que $U_n = \frac{n}{2^n}$ pour tout $n \in IN^*$
- 3°/ Soit f la fonction définie par : f(x) = ln(x) xln2 ; $x \in [1, +\infty[$ où ln désigne la fonction logarithme népérien.
 - **a /** Montrer que $\lim_{x \to x} f(x) = \Psi$
 - **b** / Vérifier que $ln(U_n) = f(n)$.
 - **c /** En déduire la limite de la suite U_n

Exercice n°3: (5 pts)

Soit $\,$ n un entier naturel. On considère la suite intégrale $\,$ ($\,$ U $_{n}$) définie par :

$$U_0 = \int_0^1 \! e^t dt \quad \text{et pour tout } n \in IN^* \ ; \quad U_n = \int_0^1 \! \left(1-t\right)^n e^t dt$$

1°/ a / Vérifier que : $U_0 = e - 1$

 ${\bf b}$ / calculer , à l'aide d'une intégration par partie , ${\bf U}_1$

2°/ a / A l'aide d'une intégration par partie sur U_{n+1} montrer que pour tout $n \in IN^*$:

$$U_{n+1} = -1 + (n+1)U_n$$

- ${\bf b}$ / En déduire $\,$ la valeur de ${\bf U}_2$
- 3°/ a / Montrer que pour tout entier non nul $n\,:\,U_n\geq 0$.
 - **b** / Montrer que (U_n) est une suite décroissante.
 - **c /** Déduire que la suite (U_n) est convergente
 - **d /** Montrer que pour tout nombre réel t de $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ et pour tout entier non nul n on a :

$$0 \le (1-t)^n . e^t \le e . (1-t)^n$$

En déduire un encadrement de U_n puis Calculer $\lim_{n \to +\infty} U_n$

Exercice N°4: (3 pts)

Cet exercice est un Q.C.M (Questionnaire à Choix Multiples). Chaque question admet une seule réponse exacte : a, b ou c. Pour chacune des questions indiquer sur la copie le numéro de la question et la lettre correspondante à la réponse choisie. Aucune justification n'est demandée

Question 1

Soit f la fonction définie sur $\left[0, \frac{\pi}{4}\right]$ par $f(x) = \tan(x)$ et S le solide de révolution obtenu par la rotation

de la courbe C de f autour de l'axe (Ox). Alors le volume engendré par le solide S est égal à :

a)
$$\pi.ln\left(\frac{\sqrt{2}}{2}\right)$$

b)
$$\pi\left(\frac{4-\pi}{4}\right)$$

c)
$$\left(\frac{4-\pi}{4}\right)$$

Question 2

Si f est la fonction définie sur IR par : $f(x) = \left(\frac{2}{3}\right)^x - \left(\frac{3}{2}\right)^x$ alors la fonction f est :

a) strictement croissante sur IR b) strictement décroissante sur IR c) constante sur IR

Question 3

Soit f la fonction définie sur IR par $f(x) = \int_0^x e^{-t^2} dt$. Alors $f''(x) = \int_0^x e^{-t^2} dt$.

a)
$$f''(x) = e^{-x^2}$$

b)
$$f''(x) = -2xe^{-x^2}$$

c)
$$f''(x) = \int_0^x -2t e^{-t^2} dt$$

