Devoir de contrôle n 3

Durée 2h

Exercice n 1 (3 points)

Soit la fonction f définie sur \mathbb{R} par : $f(x) = \cos(2x) + \sin(x)$ On note \mathcal{C}_f sa courbe représentative dans un repère orthogonal.

Pour chaque question, une seule des propositions est exacte.

- 1) La fonction f est:
 - a) non périodique. b) de période $T = \pi$. c) de période $T = 2\pi$. d) de période $T = 4\pi$.
- 2) La dérivée f'(x) de f(x) sur \mathbb{R} est :
 - **a)** $-2\sin(2x) \cos(x)$ **b)** $\cos(x)(1+4\sin(x))$ **c)** $2\sin(2x) \cos(x)$ **d)** $\cos(x)(1-4\sin(x))$
- a) O(0,0) est un centre de symétrie de C_f . b) L'axe des ordonnées est un axe de symétrie de C_f . c) La droite d'équation $x = \frac{\pi}{2}$ est un axe de symétrie de C_f . d) Le point $A(\frac{\pi}{2},0)$ est un centre de symétrie de C_f .

Exercice n 2 (5 points)

On munit l'espace d'un repère orthonormé $(O, \vec{i}, \vec{j}, \vec{k})$.

On donne les points A(1,2,3), B(4,1,0) et C(2,3,1).

Soit Δ la droite passant par D(0,-1,2) et de vecteur directeur $\vec{u} = \vec{i} - 2\vec{j} + \vec{k}$.

- 1) a) Montrer que A, B et C déterminent un plan P.
 - b) Montrer qu'une équation de P est : 5x + 3y + 4z 23 = 0.
 - c) Étudier la position relative de P et Δ .
- Montrer que le plan P et Q: x-2y+z+1=0 sont secants suivant une droite Δ' . Déterminer une représentation paramétrique de Δ' .
- 3) a Calculer d(D,P) et $d(A,\Delta)$.
 - **b)** Donner une représentation paramétrique de la droite Δ'' passant par D et perpendiculaire à P.
 - c) Étudier la position relative de Δ et Δ'' .
- **4)** An Montrer que les points A, B, C et D ne sont pas coplanaires.
 - **b)** Calculer l'aire \mathcal{A} du triangle ABC.

Exercice n 3 (6 points)

Une urne contient **11 jetons** : • **5 jetons rouges** numérotés $\{0, 1, 1, 2, 3\}$, • **4 jetons blancs** numérotés $\{0, 0, 2, 5\}$, • **2 jetons noirs** numérotés $\{2, 4\}$.

- 1) On tire successivement et avec remise quatre jetons de l'urne
 - a) Calculer le nombre de tirages possibles
 - b) Calculer le cardinal de chacun des événements suivants :
 - A_1 « Les jetons tirés sont de même couleur ». B_1 « Obtenir deux jetons rouges et un jeton blanc ». C_1 « Obtenir au moins un jeton noir » D_1 « Le premier jeton tiré n'est pas rouge »

On tire successivement et sans remise trois jetons de l'urne

- Calculer le nombre de tirages possibles
- Calculer le cardinal de chacun des événements suivants :
 - A_2 « Les jetons tirés portent des numéros de même parité ». B_2 « Obtenir des jetons dont le produit des numéros est pair ». • C_2 « Obtenir des couleurs différentes et un produit de numéros nul » • D_2 « Le premier jetons tiré est rouge ou porte un numéro pair »

On tire simultanément quatre jetons de l'urne

- Calculer le nombre de tirages possibles
- b) Calculer le cardinal de chacun des événements suivants :
 - A_3 « Les jetons tirés sont multicolores ». B_3 « Obtenir trois jetons rouges et un jeton numéro 2 ». • C_3 « obtenir au moins un jeton blanc et le numéro 2 »

Exercice n 4 (6 points)

Soit la suite U définie sur \mathbb{N} par : $\begin{cases} U_0 = 3 \\ U_{n+1} = \frac{4U_n + 1}{U_n + 4}, & \text{pour tout } n \in \mathbb{N} \end{cases}$

- 1) Calculer U_1, U_2, U_3 et U_4 .
 - Quelles conjectures peut-on faire sur le sens de variation et la convergence de la suite (U_n) ?
- a) Vérifier que pour tout $n \in \mathbb{N}, U_{n+1} = 4 \frac{15}{U_n + 4}$
 - **b**) Montrer par récurrence que pour tout $n \in \mathbb{N}$, on a $1 \leq U_n \leq 3$.
 - Étudier la monotonie de la suite (U_n) .
- On considère la suite (V_n) définie sur \mathbb{N} par : $V_n = \frac{U_n 1}{U_n + 1}$
 - Montrer que (V_n) est une suite géométrique dont on précisera la raison q et le premier terme V_0 .
 - **b)** Exprimer V_n en fonction de n.
 - **c)** Exprimer U_n en fonction de V_n , puis en fonction de n.
 - En déduire la limite de la suite (U_n) .
- a) Calculer la somme $S_n = \sum_{k=0}^n V_k$ en fonction de n. 4)
 - b) Déterminer la limite de (S_n) .
- Soient les suites (B_n) et (A_n) définies sur \mathbb{N} par : $\begin{cases} B_0 = 0 \\ B_{n+1} = \frac{3}{r}B_n + V_n \end{cases}$ et $A_n = \frac{B_n}{V_n}$, pour $n \in \mathbb{N}$.
 - Montrer que (A_n) est une suite arithmétique dont on précisera la raison et le premier terme A_0 .
 - Exprimer A_n en fonction de n.
 - En déduire l'expression de B_n en fonction de n.