Lycée Ibn Khaldoun Jemmel

A.S: 2018/2019

Devoir de Contrôle n°2

Mathématiques

Mr : Afli Ahmed Classe : 4M Durée : 120mn

Exercice n°1:

Dans le plan orienté P, on donne un triangle rectangle OAB tel que : OA = 4 et OB = 2 et $(\overrightarrow{OA}, \overrightarrow{OB}) \equiv \frac{\pi}{2}[2\pi]$.

Soient I et J les milieux respectifs des segments [OA]et [OB].

- 1.) Soit S la similitude directe qui transforme O en A et Ben O.
 - a. Déterminer le rapport et l'angle de S.
 - b. Montrer que le centre H de S est le projeté orthogonal de O sur(AB).
 - c. Montrer que S(J) = I. En déduire que $(HI) \perp (HJ)$.
- 2.) La perpendiculaire à (OA) en A, coupe (HJ) en un point C.
 - a. Montrer que S(OA) = (AC), en déduire que S(I) = C.
 - b. Montrer que AC = OA = HC.
- 3.) Soit σ la similitude indirecte qui transforme 0 en A et Ben 0.
 - a. Déterminer le rapport de σ .
 - b. On pose Ω le centre de σ . Montrer que $\Omega \in (AB)$.
 - c. On note $H' = \sigma(H)$.
 - i) Montrer que σO S⁻¹ est une symétrie orthogonale dont on précisera l'axe.
 - ii) En déduire que $S_{(OA)}(H) = H'$.
 - d. Montrer que $\Omega \in (OH')$. Construire alors Ω ainsi que l'axe $\Delta de \sigma$.
- 4.) On rapporte le plan à un repère orthonormé $(0, \frac{1}{2}\overrightarrow{OI}, \overrightarrow{OJ})$.
 - a. Soit M d'affixe z et M' d'affixe z '. Montrer que $\sigma(M) = M$ ' $\Leftrightarrow z' = -2i \overline{z} + 4$
 - b. Vérifier que $z_{\Omega} = -\frac{4}{3} + \frac{8}{3}i$.
 - c. Déterminer une équation cartésienne de Δ .

Exercice n°2:

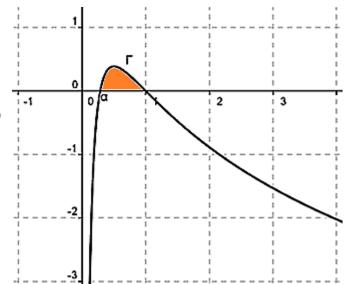
Soit F la fonction définie sur $\left[0, \frac{\pi}{2}\right]$ par : $F(x) = \int_{1}^{1+\sin x} \sqrt{2t - t^2} dt$.

- 1.) Montrer que F est dérivable sur $\left[0,\frac{\pi}{2}\right]$ puis déterminer $F^{'}(x)$.
- 2.) En déduire que pour tout $x \in \left[0, \frac{\pi}{2}\right]$ on a : $F(x) = \frac{x}{2} + \frac{1}{4}\sin(2x)$.
- 3.) Calculer, alors, les intégrales : $\int_{1}^{\frac{3}{2}} \sqrt{2t-t^2} dt \text{ et } \int_{1}^{\frac{3}{2}} \frac{2-t^2}{\sqrt{2t-t^2}} dt \text{ .}$

Exercice n°3:

I–) On consdère la fonction g définie sur $]0, +\infty[$ par $: g(x) = \frac{x-1}{x} - 2 \ln x$.

Dans la figure ci-contre, (Γ) est la courbe représentative dans un repère orthonormé de la fonctiong. La courbe (Γ) coupe l'axe des abscisses en deux points d'abscisses1 et α .



- 1.) Par une lecture graphique, déterminer le signe de g(x) pour tout $x \in]0, +\infty[$.
- 2.) Vérifier que $\ln \alpha = \frac{\alpha 1}{2\alpha}$.
- 3.) Soit \mathcal{A} l'aire de la partie du plan hachurée.

Montrer que : $\mathcal{A} = \frac{-4\alpha^2 + 5\alpha - 1}{2\alpha}$.

- II-) Soit f la fonction définie sur $]0,1[\,\cup\,]1,+\infty[$ par : $f(x)=\frac{\ln x}{(x-1)^2}$.
- 1.) a. En remarquant que $f(x) = \frac{1}{(x-1)} \frac{\ln x}{(x-1)}$, déterminer les limites de f en 1⁻ et 1⁺. Interpréter graphiquement les résultats obtenus.
 - b. Déterminer la limite de f en +∞, Interpréter graphiquement le résultat obtenu.
- 2.) a. Montrer que pour tout $x \in]0,1[\cup]1,+\infty[$ on a: $f'(x)=\frac{g(x)}{(x-1)^3}$

b. Dresser le tableau de variations de f ; Vérifier que $f(\alpha) = \frac{1}{2(\alpha - 1)\alpha}$.

- 3.) Tracer la courbe (C) de f dans un repère orthonormé (0 , $\overrightarrow{1}$, \overrightarrow{j}) du plan. (On prend $\alpha \cong 0.3$ (unité graphique : 2 cm)).
- 4.) Pour tout $a \in]2, +\infty[$, on pose : $I(a) = \int_2^a f(x)dx$.
 - a. Interpréter graphiquement I(a).
 - b. Vérifier que pour tout $x \in]1, +\infty[$ on a : $\frac{1}{x(x-1)} = \frac{-1}{x} + \frac{1}{x-1}$.
 - c. Calculer alors I(a)à l'aide d'une intégration par parties.
 - d. Déduire la limite de I(a) quand a tend vers $+\infty$.

Bon Travail