4 Maths

<u>Devoir de contrôle n°</u>2

02/02/2024

Durée: 2 heures

L.Sayada

Epreuve de mathématiques

Exercice 1 (5 points)

Soit f la fonction définie sur [-4 ; 4] par $f(x) = 1 + \sqrt{16 - x^2}$.

- 1) a) Montrer que f admet au moins une primitive sur [-4; 4].
- b) Soit F la primitive de f sur [-4 ; 4] qui s'annule en 0. Montrer que F est impaire.
- 2) Soit G la fonction définie sur $[0; \pi]$ par $G(x) = \frac{1}{4}F(4\cos x)$ et (\mathcal{C}) sa courbe représentative dans un repère orthonormé $(0,\vec{l},\vec{j})$.
- a) Montrer que K ($\frac{\pi}{2}$, 0) est un centre de symétrie de (\mathcal{C}) .
- b) Montrer que G est dérivable sur $[0; \pi]$ et calculer G'(x).
- c) En déduire que pour tout $x \in [0; \pi]$, $G(x) = \pi 2x + \cos x + \sin(2x)$.
- d) Calculer alors $F(-2\sqrt{2})$, F(2) et F(4).
- 3) a) Montrer que K est un point d'inflexion de la courbe (\mathcal{C}) de G.
- b) Tracer la courbe (C) de G.(Tracer la tangente à la courbe (C) au point (C)

Exercice 2 (5 points)

Soit (I_n) la suite définie sur IN par $I_0 = \int_0^{\frac{\pi}{6}} \sin(3x) dx$ et pour $n \ge 1$, on a : $I_n = \int_0^{\frac{\pi}{6}} x^n \sin(3x) dx$; $n \ge 1$.

- 1) a) Montrer que pour tout $n \in IN$, on $a : I_n \ge 0$.
- b) Montrer que la suite (I_n) est décroissante puis qu'elle est convergente.
- 2) a) Calculer I_0 et I_1 .
- b) Montrer que pour tout $n \in IN$, on $a : I_{n+2} = \frac{1}{9} (n+2) (\frac{\pi}{6})^{n+1} \frac{1}{9} (n+2) (n+1) I_n$.
- c) Calculer alors I_2 et I_3 .
- 3) a) Montrer que pour tout $n \in IN^*$, on $a : \frac{n+2}{n^2+3n+11} \left(\frac{\pi}{6}\right)^{n+1} \le I_n \le \frac{1}{n+1} \left(\frac{\pi}{6}\right)^{n+1}$.
- d) Déterminer alors $\lim_{n\to+\infty}(n\ I_n)$.

Exercice 3 (4 points)

Le plan complexe est rapporté à un repère orthonormé direct (O, \vec{u}, \vec{v}) . On donne les points A, B, C et D d'affixes respectives 4+2i, -1+i, 3-2i et -1+4i.

- 1) a) Montrer qu'il existe une unique similitude indirecte f qui envoie A sur C et B sur D puis déterminer son écriture complexe.
- b) Déterminer les éléments caractéristiques de f.(On note Ω le centre de f)
- 2) Soit g l'application du plan dans lui-même qui à tout M d'affixe z associe le point M' d'affixe z'= (1+i)z+1-2i.
- a) Déterminer la nature et les éléments caractéristiques de g.
- b) Déterminer l'affixe de chacun des points F=f(O), G=g(O) et N=F*G.
- c) Caractériser l'application fo g^{-1} .

Exercice 4 (6 points)

Le plan est orienté dans le sens direct, EFG est un triangle direct rectangle en E tel que EF < EG. La médiatrice \mathcal{D} du segment [FG] coupe Les droites (FG), (EG) et (EF) respectivement en A, B et C. Soit S la similitude directe de centre E qui envoie F sur B. (Voir annexe dans la feuille à rendre)

- 1) a) Déterminer l'angle de S.
- b) Déterminer l'image par S des droites (FG) et (EG). En déduire S(G).
- 2) Soit O le milieu de [BC] et \mathcal{D}' la droite perpendiculaire à \mathcal{D} en O.
- \mathcal{D}' coupe la droite (EF) en I. Montrer que S(A)=O puis que S(B)=I.
- 3) Les cercles (C_1) et (C_2) de diamètres respectifs [FG] et [BC] se recoupent en K.
- a) Construire le point J=S(K) puis montrer que BKC J est un rectangle.
- b) Montrer que les points B, I et J sont alignés.
- 4) Soit g la similitude indirecte de centre E qui envoie F sur B.
- a) Montrer que g = $S_{(EG)}$ o S.
- b) Montrer que g(C)= C'appartient à (EG).
- c) Construire les points B'=g(B), K'=g(K) puis C'.
- d) Construire l'axe Δ de g.

Feuille annexe à rendre

Exercice 4

