Lycée secondaire Ibn Sina Grombalia

Devoir de contrôle n°2

2023/2024

Prof: Mr. Ben Chaabene Ezzeddine

Épreuve : Mathématique

3ème Maths

Durée: 2h

13-02-2024

Exercice N°1: (06pts)

On considère la fonction f définie sur $\mathbb{R} \setminus \{0; -3\}$ par $f(x) = \frac{-x^2 - 2x + 6}{x^2 + 3x}$ et on désigne par (C_f) sa courbe représentative dans un repère orthogonal $(0, \vec{l}, \vec{j})$

- 1) On se propose de déterminer les réels a ; b et c tels que $f(x) = a + \frac{b}{x} + \frac{c}{x+3}$ pour tout $x \neq 0$ et $x \neq -3$
 - a) Calculer $\lim_{x\to -3} (x+3)f(x)$ et en déduire la valeur de c
 - b) Calculer $\lim_{x\to 0} xf(x)$ et en déduire la valeur de b
 - c) Calculer $\lim_{x\to +\infty} f(x)$ et en déduire la valeur de a
- 2) Etudier les variations de f
- 3) Tracer (C_f)
- 4) Soit m un réel:

Discuter suivant les valeurs de m le nombre de points d'intersection de (C_f) avec la droite d'équation y=m

Exercice \mathcal{N}^2 : (05pts)

Soit la fonction f définie sur \mathbb{R} par: $f(x) = -x^3 + 3x - 2$ et (C_f) sa courbe représentative dans un repère (O, \vec{l}, \vec{j})

- 1) Etudier les variations de f
- 2) a) Montrer que le point I(0; -2) est un centre de symétrie de (C_f)
 - b) Donner une équation de la tangente à (C_f) au point I
 - c) Etudier la position relative de (C_f) par rapport à T
- 3) a) Etudier les branches infinie de (C_f)
 - b) Tracer (T) et (C_f)
 - c) Donner le signe de f(x)

Exercice N°3: (05pts)

Soit le nombre complexe $a = \frac{-2}{1+i\sqrt{3}}$

- 1) a) Ecrire a sous forme algébrique
 - b) Montrer que $a^2 = \bar{a}$ et que $1 + a + a^2 = 0$
 - c) Ecrire a sous forme trigonométrique.
- 2) a) Vérifier que $z^2 2\sqrt{2}z = (z \sqrt{2})^2 2$
 - b) Résoudre alors dans \mathbb{C} l'équation $z^2 2\sqrt{2}z + 4 = 0$
- 3) Soit b = 1 i
 - a) Ecrire b sous forme trigonométrique.
 - b) En déduire la forme trigonométrique du nombre complexe $C = \frac{\bar{a}}{h^3}$
 - c) Déterminer alors les valeurs exactes de $cos\left(\frac{\pi}{12}\right)$ $et \sin\left(\frac{\pi}{12}\right)$

Exercice N°4: (04pts)

Dans le plan orienté; on considère un triangle ABC rectangle et isocèle en A de sens direct, on pose I le milieu du segment [BC] et Δ la droite perpendiculaire à (BC) passant par C qui coupe (AB) en D.

Soit R la rotation de centre A et d'angle $\frac{\pi}{2}$

- 1) a) Déterminer R(B)
 - b) Déterminer les images des droites (AC) et (BC) par R
 - c) Déduire R(C)
- 2) Caractériser ROR puis déduire que A est le milieu du segment [BD]
- 3) Soit E le point tel que le triangle AEB soit équilatéral direct.
 - a) Montrer qu'il existe une unique rotation R' transformant B en A et E en D
 - b) Préciser l'angle de R' et construire son centre Ω