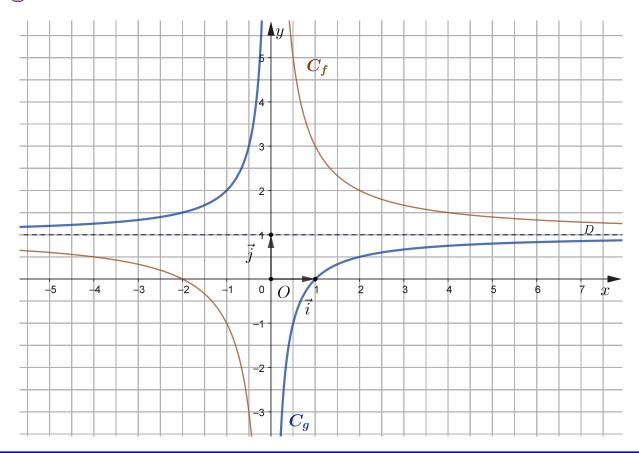
C. R. E. : Sfax-1	Devoir de contrôle N°1		Niveau : 4 ^{ème} Sc. Exp.
Date : 08 / 11 / 2025	Mathématiques	Coefficient: 3	Durée : 2 h

Noter bien : • Il sera tenu compte de la rigueur et de la clarté des réponses.

- Aucun document n'est autorisé, sauf, une calculatrice non programmable.
- L'indication des références des exercices et des questions est obligatoire.

Exercice N°1: (4 points).

- ▶ Dans le plan muni d'un repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j})$, on a tracé les courbes représentatives C_f et C_g respectivement de fonctions f et g définies toutes les deux et continues sur chacun des intervalles $]-\infty,0[$ et $]0,+\infty[$.
- ► Chacune de deux courbes admet :
- une asymptote verticale d'équation : x = 0.
- une asymptote horizontale d'équation : y = 1 au $V(\pm \infty)$.
- Observer bien la figure ci-dessous pour répondre aux questions de cet exercice :
- 1 Déterminer $g \circ f(2)$
- **2** Prouver que $D_{g \circ f} = \mathbb{R}^* \setminus \{-2\}$
- (3) (a) Calculer $\lim_{x \to 0^+} g \circ f(x)$ et $\lim_{x \to 0^-} g \circ f(x)$
 - **b** En déduire que $g \circ f$ est prolongeable par continuité en 0
- (4) a Déterminer $f(]0, +\infty[)$
 - **b** Montrer que $g \circ f$ est strictement décroissante sur $]0, +\infty[$
 - \bigcirc Déterminer $g \circ f(]0, +\infty[)$



Exercice N°2:

(8 points).

- (I) Soit f la fonction définie sur $]-\infty,0]$ par : $f(x)=\sqrt{x^2-2x}+2x$
- ▶ On désigne par \mathscr{C}_f la courbe représentative de f dans un repère orthonormé $\left(O, \overrightarrow{i}, \overrightarrow{j}\right)$.
- 1 a Montrer que $\lim_{n \to \infty} f = -\infty$
 - **(b)** Montrer que la droite D: y = x + 1 est une asymptote oblique à \mathcal{C}_f au $V(-\infty)$
- \bigcirc Etudier la dérivabilité de f à gauche en 0 puis interpréter graphiquement le résultat obtenu.
- **3** a Justifier que f est dérivable sur $]-\infty,0[$
 - **b** Etablir que pour tout réel x < 0 on a : $f'(x) = \frac{3x^2 6x 1}{\sqrt{x^2 2x} \left(2\sqrt{x^2 2x} + 1 x\right)}$
 - $oldsymbol{c}$ Dresser le tableau de variations de f sur $]-\infty,0]$
- $raket{4}$ Déterminer les abscisses de points d'intersection de \mathscr{C}_f avec l'axe $\left(O,\overrightarrow{i}\right)$.
- **5** Tracer convenablement la courbe \mathcal{C}_f sur l'annexe ci-jointe.
- (II) Soit g la fonction définie sur \mathbb{R} par : $g(x) = \begin{cases} f(x) & \text{si } x \leq 0 \\ \frac{1 \cos\left(\pi\sqrt{x}\right)}{x} \frac{\pi^2}{2} & \text{si } x > 0 \end{cases}$
- ▶ On désigne par \mathscr{C}_g la courbe représentative de g dans le même repère orthonormé $\left(O, \overrightarrow{i}, \overrightarrow{j}\right)$.
- 1 a Prouver que pour tout réel x > 0 on a : $-\frac{\pi^2}{2} \le g(x) \le \frac{2}{x} \frac{\pi^2}{2}$
 - **(b)** Calculer $\lim_{t\to\infty} g$ puis interpréter graphiquement le résultat obtenu.
- 2 Montrer que g est continue en 0

Exercice N°3: (8 points).

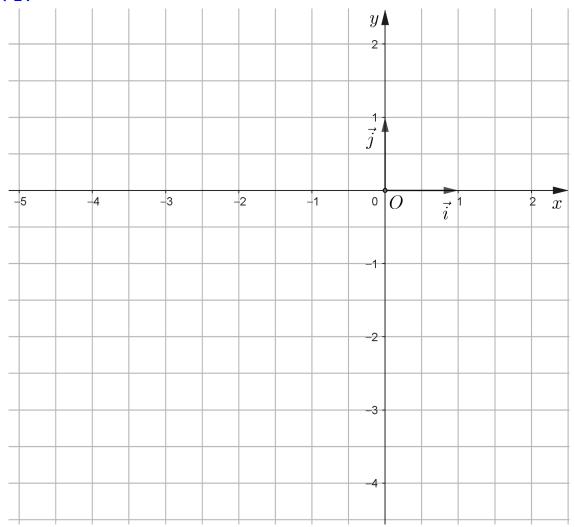
Le plan complexe P est rapporté à un repère orthonormé direct (O, \vec{u}, \vec{v}) .

- 1 a Développer $(3 i\sqrt{3})^2$
 - **b** Résoudre, alors, dans \mathbb{C} l'équation $(E):3z^2-(3-5i\sqrt{3})z-(6+2i\sqrt{3})=0$
- 2 On considère dans C l'équation $(E'): 3z^3 + (3+5i\sqrt{3})z^2 (12-8i\sqrt{3})z (12+4i\sqrt{3}) = 0$
 - (a) Résoudre dans \mathbb{R} l'équation $(E''): 5x^2 + 8x 4 = 0$
 - **b** Vérifier que l'une de solutions de (E'') vérifie (E'). (On notera z_0 cette solution).
 - © Déterminer les nombres complexes a, b et c tels que pour tout $z \in \mathbb{C}$ on a : $3z^3 + (3+5i\sqrt{3})z^2 (12-8i\sqrt{3})z (12+4i\sqrt{3}) = (z-z_0)(az^2+bz+c)$
 - **d** Résoudre, alors, dans \mathbb{C} l'équation (E')
- 3 On donne dans P les points avec leurs affixes : $A\left(1-i\sqrt{3}\right)$, B(-2), C(2) et $H\left(-\frac{2\sqrt{3}}{3}i\right)$
 - (a) Écrire z_A sous forme exponentielle.
 - **b** Construire le point *A* sur l'annexe ci-jointe.
 - © Montrer que $\frac{z_H z_A}{z_B z_A} = \frac{1}{3}$ puis déduire que $H \in [AB)$ et construire le point H
- 4 Soient M(z) un point de $P\setminus (O,\vec{u})$ tel que |z|=2 et J le point tel que $z_J=3-i\sqrt{3}+z$
 - (a) Prouver que MBAJ est un parallélogramme.
 - **b** On pose $z=2e^{i\theta}$ où θ est un réel de l'intervalle $[0,\pi]$.
 - i. Vérifier que : $1 + e^{i\theta} = 2\cos\left(\frac{\theta}{2}\right)e^{i\frac{\theta}{2}}$
 - ii. Montrer que : $\frac{z-z_B}{z_A-z_B}=\frac{4}{\sqrt{3}}\cos\left(\frac{\theta}{2}\right)e^{i\left(\frac{\theta}{2}+\frac{\pi}{6}\right)}$
 - iii. Montrer que *MBAJ* est un rectangle si et seulement si $\theta = \frac{2\pi}{3}$
 - **c** Dans cette question, on prend $\theta = \frac{2\pi}{3}$
 - i. Placer le point M et vérifier que J = C
 - ii. La parallèle à (MB) passant par H coupe (AM) en un point F. Démontrer $\overrightarrow{AF} = \frac{1}{3}\overrightarrow{AM}$
 - iii. En déduire l'affixe du point F.

Devoir de contrôle N°1 en mathématiques pour 4ème Sc. Exp.: 2025/2026

Annexe à rendre avec la copie

Exercice N°2:



Exercice N°3:

